ccd_process¶
-
ccdproc.
ccd_process
(ccd, oscan=None, trim=None, error=False, master_bias=None, dark_frame=None, master_flat=None, bad_pixel_mask=None, gain=None, readnoise=None, oscan_median=True, oscan_model=None, min_value=None, dark_exposure=None, data_exposure=None, exposure_key=None, exposure_unit=None, dark_scale=False, gain_corrected=True, add_keyword=True)[source]¶ Perform basic processing on ccd data.
The following steps can be included:
- overscan correction (
subtract_overscan()
) - trimming of the image (
trim_image()
) - create deviation frame (
create_deviation()
) - gain correction (
gain_correct()
) - add a mask to the data
- subtraction of master bias (
subtract_bias()
) - subtraction of a dark frame (
subtract_dark()
) - correction of flat field (
flat_correct()
)
The task returns a processed
CCDData
object.Parameters: ccd :
CCDData
Frame to be reduced.
oscan :
CCDData
, str or None, optionalFor no overscan correction, set to None. Otherwise provide a region of ccd from which the overscan is extracted, using the FITS conventions for index order and index start, or a slice from ccd that contains the overscan. Default is
None
.trim : str or None, optional
For no trim correction, set to None. Otherwise provide a region of ccd from which the image should be trimmed, using the FITS conventions for index order and index start. Default is
None
.error : bool, optional
If True, create an uncertainty array for ccd. Default is
False
.master_bias :
CCDData
or None, optionalA master bias frame to be subtracted from ccd. The unit of the master bias frame should match the unit of the image after gain correction if
gain_corrected
is True. Default isNone
.dark_frame :
CCDData
or None, optionalA dark frame to be subtracted from the ccd. The unit of the master dark frame should match the unit of the image after gain correction if
gain_corrected
is True. Default isNone
.master_flat :
CCDData
or None, optionalA master flat frame to be divided into ccd. The unit of the master flat frame should match the unit of the image after gain correction if
gain_corrected
is True. Default isNone
.bad_pixel_mask :
numpy.ndarray
or None, optionalA bad pixel mask for the data. The bad pixel mask should be in given such that bad pixels have a value of 1 and good pixels a value of 0. Default is
None
.gain :
Quantity
or None, optionalGain value to multiple the image by to convert to electrons. Default is
None
.readnoise :
Quantity
or None, optionalRead noise for the observations. The read noise should be in electrons. Default is
None
.oscan_median : bool, optional
If true, takes the median of each line. Otherwise, uses the mean. Default is
True
.oscan_model :
Model
or None, optionalModel to fit to the data. If None, returns the values calculated by the median or the mean. Default is
None
.min_value : float or None, optional
Minimum value for flat field. The value can either be None and no minimum value is applied to the flat or specified by a float which will replace all values in the flat by the min_value. Default is
None
.dark_exposure :
Quantity
or None, optionalExposure time of the dark image; if specified, must also provided
data_exposure
. Default isNone
.data_exposure :
Quantity
or None, optionalExposure time of the science image; if specified, must also provided
dark_exposure
. Default isNone
.exposure_key :
Keyword
, str or None, optionalName of key in image metadata that contains exposure time. Default is
None
.exposure_unit :
Unit
or None, optionalUnit of the exposure time if the value in the meta data does not include a unit. Default is
None
.dark_scale : bool, optional
If True, scale the dark frame by the exposure times. Default is
False
.gain_corrected : bool, optional
If True, the
master_bias
,master_flat
, anddark_frame
have already been gain corrected. Default isTrue
.Returns: occd :
CCDData
Reduded ccd.
Examples
To overscan, trim and gain correct a data set:
>>> import numpy as np >>> from astropy import units as u >>> from ccdproc import CCDData >>> from ccdproc import ccd_process >>> ccd = CCDData(np.ones([100, 100]), unit=u.adu) >>> nccd = ccd_process(ccd, oscan='[1:10,1:100]', ... trim='[10:100, 1:100]', error=False, ... gain=2.0*u.electron/u.adu)
- overscan correction (