block_reduce¶
-
ccdproc.
block_reduce
(ccd, block_size, func=<function sum>)[source]¶ Thin wrapper around
astropy.nddata.block_reduce
. Downsample a data array by applying a function to local blocks.If
data
is not perfectly divisible byblock_size
along a given axis then the data will be trimmed (from the end) along that axis.Parameters: data : array_like
The data to be resampled.
block_size : int or array_like (int)
The integer block size along each axis. If
block_size
is a scalar anddata
has more than one dimension, thenblock_size
will be used for for every axis.func : callable, optional
Returns: output : array-like
The resampled data.
Examples
>>> import numpy as np >>> from astropy.nddata.utils import block_reduce >>> data = np.arange(16).reshape(4, 4) >>> block_reduce(data, 2) array([[10, 18], [42, 50]])
>>> block_reduce(data, 2, func=np.mean) array([[ 2.5, 4.5], [ 10.5, 12.5]])