
ccdproc Documentation
Release 2.0.1

Steve Crawford, Matt Craig, and Michael Seifert

Sep 06, 2019





Contents

I Detailed, step-by-step guide 3

II Getting started 7

III Using ccdproc 33

i



ii



ccdproc Documentation, Release 2.0.1

ccdproc
An Astropy image reduction package

Ccdproc is is an Astropy affiliated package for basic data reductions of CCD images. It provides the essential tools
for processing of CCD images in a framework that provides error propagation and bad pixel tracking throughout the
reduction process.

Important: If you use ccdproc for a project that leads to a publication, whether directly or as a dependency of another
package, please include an acknowledgment and/or citation.

Contents 1

http://astropy.org
https://www.astropy.org/affiliated/index.html


ccdproc Documentation, Release 2.0.1

2 Contents



Part I

Detailed, step-by-step guide

3





ccdproc Documentation, Release 2.0.1

In addition to the documentation here, a detailed guide to the topic of CCD data reduction using ccdproc and other
astropy tools is available here: https://mwcraig.github.io/ccd-as-book/00-00-Preface

5

http://astropy.org
https://mwcraig.github.io/ccd-as-book/00-00-Preface


ccdproc Documentation, Release 2.0.1

6



Part II

Getting started

7





CHAPTER 1

Installation

1.1 Requirements

Ccdproc has the following requirements:

• Astropy v2.0 or later

• NumPy

• SciPy

• scikit-image

• astroscrappy

• reproject

One easy way to get these dependencies is to install a python distribution like anaconda.

1.2 Installing ccdproc

1.2.1 Using pip

To install ccdproc with pip, simply run:

pip install ccdproc

1.2.2 Using conda

To install ccdproc with anaconda, run:

conda install -c astropy ccdproc

9

http://astropy.org
http://www.numpy.org/
https://www.scipy.org/
http://scikit-image.org/
https://github.com/astropy/astroscrappy
https://github.com/astrofrog/reproject
https://anaconda.com/
https://pip.pypa.io/en/latest/
https://anaconda.com/


ccdproc Documentation, Release 2.0.1

1.3 Building from source

1.3.1 Obtaining the source packages

Source packages

The latest stable source package for ccdproc can be downloaded here.

Development repository

The latest development version of ccdproc can be cloned from github using this command:

git clone git://github.com/astropy/ccdproc.git

1.3.2 Building and Installing

To build ccdproc (from the root of the source tree):

python setup.py build

To install ccdproc (from the root of the source tree):

pip install .

To set up a development install in which changes to the source are immediately reflected in the installed package (from
the root of the source tree):

pip install -e .

1.3.3 Testing a source code build of ccdproc

The easiest way to test that your ccdproc built correctly (without installing ccdproc) is to run this from the root of the
source tree:

python setup.py test

10 Chapter 1. Installation

https://pypi.org/project/ccdproc/#files


CHAPTER 2

Overview

Note: ccdproc works only with astropy version 2.0 or later.

The ccdproc package provides:

• An image class, CCDData, that includes an uncertainty for the data, units and methods for performing arithmetic
with images including the propagation of uncertainties.

• A set of functions performing common CCD data reduction steps (e.g. dark subtraction, flat field correction)
with a flexible mechanism for logging reduction steps in the image metadata.

• A function for reprojecting an image onto another WCS, useful for stacking science images. The actual repro-
jection is done by the reproject package.

• A class for combining and/or clipping images, Combiner, and associated functions.

• A class, ImageFileCollection, for working with a directory of images.

11

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://reproject.readthedocs.io/en/stable/


ccdproc Documentation, Release 2.0.1

12 Chapter 2. Overview



CHAPTER 3

Getting Started

A CCDData object can be created from a numpy array (masked or not) or from a FITS file:

>>> import numpy as np
>>> from astropy import units as u
>>> from astropy.nddata import CCDData
>>> import ccdproc
>>> image_1 = CCDData(np.ones((10, 10)), unit="adu")

An example of reading from a FITS file is image_2 = astropy.nddata.CCDData.read('my_image.fits',
unit="electron") (the electron unit is defined as part of ccdproc).

The metadata of a CCDData object may be any dictionary-like object, including a FITS header. When a CCDData object
is initialized from FITS file its metadata is a FITS header.

The data is accessible either by indexing directly or through the data attribute:

>>> sub_image = image_1[:, 1:-3] # a CCDData object
>>> sub_data = image_1.data[:, 1:-3] # a numpy array

See the documentation for CCDData for a complete list of attributes.

Most operations are performed by functions in ccdproc:

>>> dark = CCDData(np.random.normal(size=(10, 10)), unit="adu")
>>> dark_sub = ccdproc.subtract_dark(image_1, dark,
... dark_exposure=30*u.second,
... data_exposure=15*u.second,
... scale=True)

See the documentation for subtract_dark for more compact ways of providing exposure times.

Every function returns a copy of the data with the operation performed.

Every function in ccdproc supports logging through the addition of information to the image metadata.

Logging can be simple – add a string to the metadata:

13

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

>>> dark_sub_gained = ccdproc.gain_correct(dark_sub, 1.5 * u.photon/u.adu, add_keyword='gain_corrected')

Logging can be more complicated – add several keyword/value pairs by passing a dictionary to add_keyword:

>>> my_log = {'gain_correct': 'Gain value was 1.5',
... 'calstat': 'G'}
>>> dark_sub_gained = ccdproc.gain_correct(dark_sub,
... 1.5 * u.photon/u.adu,
... add_keyword=my_log)

You might wonder why there is a gain_correct at all, since the implemented gain correction simple multiplies by a
constant. There are two things you get with gain_correct that you do not get with multiplication:

• Appropriate scaling of uncertainties.

• Units

The same advantages apply to operations that are more complex, like flat correction, in which one image is divided by
another:

>>> flat = CCDData(np.random.normal(1.0, scale=0.1, size=(10, 10)),
... unit='adu')
>>> image_1_flat = ccdproc.flat_correct(image_1, flat)

In addition to doing the necessary division, flat_correct propagates uncertainties (if they are set).

The function wcs_project allows you to reproject an image onto a different WCS.

To make applying the same operations to a set of files in a directory easier, use an ImageFileCollection. It con-
structs, given a directory, a Table containing the values of user-selected keywords in the directory. It also provides
methods for iterating over the files. The example below was used to find an image in which the sky background was
high for use in a talk:

>>> from ccdproc import ImageFileCollection
>>> import numpy as np
>>> from glob import glob
>>> dirs = glob('/Users/mcraig/Documents/Data/feder-images/fixed_headers/20*-??-??')

>>> for d in dirs:
... print(d)
... ic = ImageFileCollection(d, keywords='*')
... for data, fname in ic.data(imagetyp='LIGHT', return_fname=True):
... if data.mean() > 4000.:
... print(fname)

14 Chapter 3. Getting Started

http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table


CHAPTER 4

Citing ccdproc

If you use ccdproc for a project that leads to a publication, whether directly or as a dependency of another package,
please include the following acknowledgment:

This research made use of ccdproc, an Astropy package for
image reduction (Craig et al. 20XX).

where (Craig et al. 20XX) is a citation to the Zenodo record of the ccdproc version that was used. We also encourage
citations in the main text wherever appropriate.

For example, for ccdprpoc v1.3.0.post1 one would cite Craig et al. 2017 with the BibTeX entry (https://zenodo.org/
record/1069648/export/hx):

@misc{matt_craig_2017_1069648,
author = {Matt Craig and Steve Crawford and Michael Seifert and

Thomas Robitaille and Brigitta Sip{\H o}cz and
Josh Walawender and Z\`e Vin{\'{\i}}cius and Joe Philip Ninan and Michael␣

→˓Droettboom and Jiyong Youn and
Erik Tollerud and Erik Bray and
Nathan Walker and VSN Reddy Janga and
Connor Stotts and Hans Moritz G{\"u}nther and Evert Rol and
Yoonsoo P. Bach and Larry Bradley and Christoph Deil and
Adrian Price-Whelan and Kyle Barbary and Anthony Horton and
William Schoenell and Nathan Heidt and Forrest Gasdia and
Stefan Nelson and Ole Streicher},

title = {astropy/ccdproc: v1.3.0.post1},
month = dec,
year = 2017,
doi = {10.5281/zenodo.1069648},
url = {https://doi.org/10.5281/zenodo.1069648}

}

All ccdproc versions (and more citation formats) can be found at https://doi.org/10.5281/zenodo.1069648.

15

https://doi.org/10.5281/zenodo.1069648
https://zenodo.org/record/1069648/export/hx
https://zenodo.org/record/1069648/export/hx
https://doi.org/10.5281/zenodo.1069648


ccdproc Documentation, Release 2.0.1

16 Chapter 4. Citing ccdproc



CHAPTER 5

Reporting Issues and contributing code

5.1 Reporting Issues

If you have found a bug in ccdproc please report it by creating a new issue on the ccdproc GitHub issue tracker. That
requires creating a free Github account if you do not have one.

Please include an example that demonstrates the issue and will allow the developers to reproduce and fix the problem,
if possible. You may be asked to also provide information about your operating system and a full Python stack trace.
The developers will walk you through obtaining a stack trace if it is necessary.

5.2 Contributing code

Like the Astropy project, ccdproc is made both by and for its users. We accept contributions at all levels, spanning the
gamut from fixing a typo in the documentation to developing a major new feature. We welcome contributors who will
abide by the Astropy Code of Conduct.

Ccdproc follows the same workflow and coding guidelines as Astropy. The following pages will help you get started
with contributing fixes, code, or documentation (no git or GitHub experience necessary):

• How to make a code contribution

• Coding Guidelines

• Developer Documentation

17

https://github.com/astropy/ccdproc/issues
https://github.com/
http://astropy.org
https://ccdproc.rtfd.io
https://www.astropy.org/code_of_conduct.html
http://astropy.org
https://astropy.readthedocs.io/en/stable/development/workflow/development_workflow.html
https://docs.astropy.org/en/latest/development/codeguide.html
https://docs.astropy.org/en/latest/#developer-documentation


ccdproc Documentation, Release 2.0.1

18 Chapter 5. Reporting Issues and contributing code



CHAPTER 6

Code of Conduct

Ccdproc is an Astropy affiliated package and we follow the Astropy Community Code of Conduct.

19

http://astropy.org
http://www.astropy.org/code_of_conduct.html


ccdproc Documentation, Release 2.0.1

20 Chapter 6. Code of Conduct



CHAPTER 7

Contributors

7.1 Authors and Credits

7.1.1 ccdproc Project Contributors

Project Coordinators

• Matt Craig (@mwcraig)

• Steve Crawford (@crawfordsm)

• Michael Seifert (@MSeifert04)

Alphabetical list of contributors

• Jaime A. Alvarado-Montes (@seap-jaime)

• Yoonsoo P. Bach (@ysBach)

• Kyle Barbary (@kbarbary)

• Javier Blasco (@javierblasco)

• Julio C. N. Campagnolo (@juliotux)

• Mihai Cara (@mcara)

• Christoph Deil (@cdeil)

• Carlos Gomez (@carlgogo)

• Hans Moritz Günther (@hamogu)

• Forrest Gasdia (@EP-Guy)

• Nathan Heidt (@heidtha)

• Michael Hlabathe (@hlabathems)

21



ccdproc Documentation, Release 2.0.1

• Elias Holte (@Sondanaa)

• Anthony Horton (@AnthonyHorton)

• Jennifer Karr (@JenniferKarr)

• Yücel Kılıç (@yucelkilic)

• James McCormac (@jmccormac01)

• Stefan Nelson (@stefannelson)

• Joe Philip Ninan (@indiajoe)

• Punyaslok Pattnaik (@Punyaslok)

• Adrian Price-Whelan (@adrn)

• Luca Rizzi (@lucarizzi)

• Evert Rol (@evertrol)

• William Schoenell (@wschoenell)

• Sourav Singh (@souravsingh)

• Brigitta Sipocz (@bsipocz)

• Connor Stotts (@stottsco)

• Ole Streicher (@olebole)

• JVSN Reddy (@janga1997)

• Brigitta Sipocz (@bsipocz)

• Erik Tollerud (@eteq)

• Simon Torres (@simontorres)

• Zè Vinícius (@mirca)

• Josh Walawender (@joshwalawender)

• Nathan Walker (@walkerna22)

• Benjamin Weiner (@bjweiner)

• Jiyong Youn (@hletrd)

(If you have contributed to the ccdproc project and your name is missing, please send an email to the coordinators, or
open a pull request for this page in the ccdproc repository)

22 Chapter 7. Contributors

https://github.com/astropy/ccdproc/edit/master/AUTHORS.rst
https://github.com/astropy/ccdproc


CHAPTER 8

Full Changelog

8.1 2.1.0 (Unreleased)

8.1.1 New Features

8.1.2 Other Changes and Additions

8.1.3 Bug Fixes

8.2 2.0.1 (Unreleased)

8.2.1 New Features

8.2.2 Other Changes and Additions

8.2.3 Bug Fixes

• Move generation of sample directory of images to avoid importing pytest in user installation. [#699, #700]

8.3 2.0.0 (2019-09-02)

8.3.1 New Features

• Allow initialization of ImageFileCollection from a list of files with no location set. [#374, #661, #680]

• Allow identification of FITS files in ImageFileCollection based on content of the files instead of file name
extension. [#620, #680]

23



ccdproc Documentation, Release 2.0.1

• Add option to use regular expression matching when filtering items in ImageFileCollection. [#480, #595,
#682]

• Added an option to disregard negative values passed to create_deviation and assume the error is represented
by the read noise [#688]

• Add filter method to ImageFileCollection that creates a new collection by filtering based on header key-
words. [#596, #690]

8.3.2 Other Changes and Additions

• Dropped support for Python 2.x and Astropy 1.x.

• Removed deprecated property summary_info of ImageFileCollection.

• Improved handling of large flags in the bitfield module. [#610, #611]

• Improved the performance of several ImageFileCollection methods. [#599]

• Added auto_logging configuration paramenter [#622, #90]

• Added support for .fz,.bz2, .Z and .zip file formats in ImageFileCollection. [#623, #644]

• Modified weights function to also accept 1D array in Combiner. [#634, #670]

• Added warning that transform_image does not apply the transformation to the WCS [#684]

• When creating a new object in wcs_transform, WCS keywords in the header are removed so that they are only
stored in the WCS object [#685]

• Improved warning for negative values in the array passed to create_deviation [#688]

• Removed support for initializing ImageFileCollection from a table instead of files. [#680]

• More consistent typing of ImageFileCollection.summary when the collection is empty. [#601, #680]

8.3.3 Bug Fixes

• Function median_combine now correctly calculates the uncertainty for masked CCDData. [#608]

• Function combine avoids keeping files open unnecessarily. [#629, #630]

• Function combine more accurately estimates memory use when deciding how to chunk files. [#638, #642]

• Raise ValueError error in subtract_dark for when the errors have different shapes [#674, #677]

• Fix problem with column dtypes when initializing ImageFileCollection from a list of file names. [#662,
#680]

8.4 1.3.0 (2017-11-1)

8.4.1 New Features

• Add representation for ImageFileCollection. [#475, #515]

• Added ext parameter and property to ImageFileCollection to specify the FITS extension. [#463]

• Add keywords.deleter method to ImageFileCollection. [#474]

• Added glob_include and glob_exclude parameter to ImageFileCollection. [#484]

24 Chapter 8. Full Changelog



ccdproc Documentation, Release 2.0.1

• Add bitfield_to_boolean_mask function to convert a bitfield to a boolean mask (following the numpy
conventions). [#460]

• Added gain_corrected option in ccd_process so that calibration files do not need to previously been gain
corrected. [#491]

• Add a new wcs_relax argument to CCDData.to_header() that is passed through to the WCS method of the same
name to allow more flexible handing of headers with SIP distortion. [#501]

• combine now accepts numpy.ndarray as the input img_list. [#493, #503]

• Added sum option in method for combime. [#500, #508]

• Add norm_value argument to flat_correct that allows the normalization of the flat frame to be manually
specified. [#584, #577]

8.4.2 Other Changes and Additions

• removed ability to set unit of CCDData to None. [#451]

• deprecated summary_info property of ImageFileCollection now raises a deprecation warning. [#486]

• Logging will include the abbreviation even if the meta attribute of the processed CCDData isn’t a fits.Header.
[#528]

• The CCDData class and the functions fits_ccddata_reader and fits_ccddata_writer will be imported from
astropy.nddata if astropy >= 2.0 is installed (instead of the one defined in ccdproc). [#528]

• Building the documentation requires astropy >= 2.0. [#528]

• When reading a CCDData from a file the WCS-related keywords are removed from the header. [#568]

• The info_file argument for ImageFileCollection is now deprecated. [#585]

8.4.3 Bug Fixes

• ImageFileCollection now handles Headers with duplicated keywords (other than COMMENT and HISTORY) by
ignoring all but the first. [#467]

• The ccd method of ImageFileCollection will raise an NotImplementedError in case the parameter
overwrite=True or clobber=True is used instead of silently ignoring the parameter. [#527]

• The sort method of ImageFileCollection now requires an explicitly given keys argument. [#534]

• Fixed a problem with CCDData.read when the extension wasn’t given and the primary HDU contained no data
but another HDU did. In that case the header were not correctly combined. [#541]

• Suppress errors during WCS creation in CCDData.read(). [#552]

• The generator methods in ImageFileCollection now don’t leave open file handles in case the iterator wasn’t
advanced or an exception was raised either inside the method itself or during the loop. [#553]

• Allow non-string columns when filtering an ImageFileCollection with a string value. [#567]

8.5 1.2.0 (2016-12-13)

ccdproc has now the following additional dependency:

• scikit-image.

8.5. 1.2.0 (2016-12-13) 25



ccdproc Documentation, Release 2.0.1

8.5.1 New Features

• Add an optional attribute named filenames to ImageFileCollection, so that users can pass a list of FITS files
to the collection. [#374, #403]

• Added block_replicate, block_reduce and block_average functions. [#402]

• Added median_filter function. [#420]

• combine now takes an additional combine_uncertainty_function argument which is passed as
uncertainty_func parameter to Combiner.median_combine or Combiner.average_combine. [#416]

• Added ccdmask function. [#414, #432]

8.5.2 Other Changes and Additions

• ccdprocs core functions now explicitly add HIERARCH cards. [#359, #399, #413]

• combine now accepts a dtype argument which is passed to Combiner.__init__. [#391, #392]

• Removed CaseInsensitiveOrderedDict because it is not used in the current code base. [#428]

8.5.3 Bug Fixes

• The default dtype of the combine-result doesn’t depend on the dtype of the first CCDData anymore. This also
corrects the memory consumption calculation. [#391, #392]

• ccd_process now copies the meta of the input when subtracting the master bias. [#404]

• Fixed combine with CCDData objects using StdDevUncertainty as uncertainty. [#416, #424]

• ccds generator from ImageFileCollection now uses the full path to the file when calling
fits_ccddata_reader. [#421 #422]

8.6 1.1.0 (2016-08-01)

8.6.1 New Features

• Add an additional combination method, clip_extrema, that drops the highest and/or lowest pixels in an image
stack. [#356, #358]

8.6.2 Other Changes and Additions

• cosmicray_lacosmic default satlevel changed from 65536 to 65535. [#347]

• Auto-identify files with extension fts as FITS files. [#355, #364]

• Raise more explicit exception if unit of uncalibrated image and master do not match in subtract_bias or
subtract_dark. [#361, #366]

• Updated the Combiner class so that it could process images with >2 dimensions. [#340, #375]

26 Chapter 8. Full Changelog



ccdproc Documentation, Release 2.0.1

8.6.3 Bug Fixes

• Combiner creates plain array uncertainties when using‘‘average_combine‘‘ or median_combine. [#351]

• flat_correct does not properly scale uncertainty in the flat. [#345, #363]

• Error message in weights setter fixed. [#376]

8.7 1.0.1 (2016-03-15)

The 1.0.1 release was a release to fix some minor packaging issues.

8.8 1.0.0 (2016-03-15)

8.8.1 General

• ccdproc has now the following requirements:

– Python 2.7 or 3.4 or later.

– astropy 1.0 or later

– numpy 1.9 or later

– scipy

– astroscrappy

– reproject

8.8.2 New Features

• Add a WCS setter for CCDData. [#256]

• Allow user to set the function used for uncertainty calculation in average_combine and median_combine.
[#258]

• Add a new keyword to ImageFileCollection.files_filtered to return the full path to a file [#275]

• Added ccd_process for handling multiple steps. [#211]

• CCDData.write now writes multi-extension-FITS files. The mask and uncertainty are saved as extensions if
these attributes were set. The name of the extensions can be altered with the parameters hdu_mask (default
extension name 'MASK') and hdu_uncertainty (default 'UNCERT'). CCDData.read can read these files and has
the same optional parameters. [#302]

8.8.3 Other Changes and Additions

• Issue warning if there are no FITS images in an ImageFileCollection. [#246]

• The overscan_axis argument in subtract_overscan can now be set to None, to let subtract_overscan provide a
best guess for the axis. [#263]

• Add support for wildcard and reversed FITS style slicing. [#265]

8.7. 1.0.1 (2016-03-15) 27



ccdproc Documentation, Release 2.0.1

• When reading a FITS file with CCDData.read, if no data exists in the primary hdu, the resultant header object
is a combination of the header information in the primary hdu and the first hdu with data. [#271]

• Changed cosmicray_lacosmic to use astroscrappy for cleaning cosmic rays. [#272]

• CCDData arithmetic with number/Quantity now preserves any existing WCS. [#278]

• Update astropy_helpers to 1.1.1. [#287]

• Drop support for Python 2.6. [#300]

• The add_keyword parameter now has a default of True, to be more explicit. [#310]

• Return name of file instead of full path in ImageFileCollection generators. [#315]

8.8.4 Bug Fixes

• Adding/Subtracting a CCDData instance with a Quantity with a different unit produced wrong results. [#291]

• The uncertainty resulting when combining CCDData will be divided by the square root of the number of com-
bined pixel [#309]

• Improve documentation for read/write methods on CCDData [#320]

• Add correct path separator when returning full path from ImageFileCollection.files_filtered. [#325]

8.9 0.3.3 (2015-10-24)

8.9.1 New Features

• add a sort method to ImageFileCollection [#274]

8.9.2 Other Changes and Additions

• Opt in to new container-based builds on travis. [#227]

• Update astropy_helpers to 1.0.5. [#245]

8.9.3 Bug Fixes

• Ensure that creating a WCS from a header that contains list-like keywords (e.g. BLANK or HISTORY) succeeds.
[#229, #231]

8.10 0.3.2 (never released)

There was no 0.3.2 release because of a packaging error.

28 Chapter 8. Full Changelog



ccdproc Documentation, Release 2.0.1

8.11 0.3.1 (2015-05-12)

8.11.1 New Features

• Add CCDData generator for ImageCollection [#405]

8.11.2 Other Changes and Additions

• Add extensive tests to ensure ccdproc functions do not modify the input data. [#208]

• Remove red-box warning about API stability from docs. [#210]

• Support astropy 1.0.5, which made changes to NDData. [#242]

8.11.3 Bug Fixes

• Make subtract_overscan act on a copy of the input data. [#206]

• Overscan subtraction failed on non-square images if the overscan axis was the first index, 0. [#240, #244]

8.12 0.3.0 (2015-03-17)

8.12.1 New Features

• When reading in a FITS file, the extension to be used can be specified. If it is not and there is no data in the
primary extension, the first extension with data will be used.

• Set wcs attribute when reading from a FITS file that contains WCS keywords and write WCS keywords to
header when converting to an HDU. [#195]

8.12.2 Other Changes and Additions

• Updated CCDData to use the new version of NDDATA in astropy v1.0. This breaks backward compatibility
with earlier versions of astropy.

8.12.3 Bug Fixes

• Ensure dtype of combined images matches the dtype of the Combiner object. [#189]

8.13 0.2.2 (2014-11-05)

8.13.1 New Features

• Add dtype argument to ccdproc.Combiner to help control memory use [#178]

8.11. 0.3.1 (2015-05-12) 29



ccdproc Documentation, Release 2.0.1

8.13.2 Other Changes and Additions

• Added Changes to the docs [#183]

8.13.3 Bug Fixes

• Allow the unit string “adu” to be upper or lower case in a FITS header [#182]

8.14 0.2.1 (2014-09-09)

8.14.1 New Features

• Add a unit directly from BUNIT if it is available in the FITS header [#169]

8.14.2 Other Changes and Additions

• Relaxed the requirements on what the metadata must be. It can be anything dict-like, e.g. an as-
tropy.io.fits.Header, a python dict, an OrderedDict or some custom object created by the user. [#167]

8.14.3 Bug Fixes

• Fixed a new-style formating issue in the logging [#170]

8.15 0.2 (2014-07-28)

• Initial release.

30 Chapter 8. Full Changelog



CHAPTER 9

License

9.1 Ccdproc License

Ccdproc is licensed under a 3-clause BSD style license:

Copyright (c) 2011-2017, Astropy-ccdproc Developers All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the Astropy Team nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

31



ccdproc Documentation, Release 2.0.1

32 Chapter 9. License



Part III

Using ccdproc

33





CHAPTER 10

Using the CCDData image class: I/O, properties and arithmetic

10.1 Input and output

10.1.1 Getting data in

The tools in ccdproc accept only CCDData objects, a subclass of NDData.

Creating a CCDData object from any array-like data is easy:

>>> import numpy as np
>>> from astropy.nddata import CCDData
>>> import ccdproc
>>> ccd = CCDData(np.arange(10), unit="adu")

Note that behind the scenes, NDData creates references to (not copies of) your data when possible, so modifying the
data in ccd will modify the underlying data.

You are required to provide a unit for your data. The most frequently used units for these objects are likely to be adu,
photon and electron, which can be set either by providing the string name of the unit (as in the example above) or
from unit objects:

>>> from astropy import units as u
>>> ccd_photon = CCDData([1, 2, 3], unit=u.photon)
>>> ccd_electron = CCDData([1, 2, 3], unit="electron")

If you prefer not to use the unit functionality then use the special unit u.dimensionless_unscaled when you create
your CCDData images:

>>> ccd_unitless = CCDData(np.zeros((10, 10)),
... unit=u.dimensionless_unscaled)

A CCDData object can also be initialized from a FITS file:

35

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

>>> ccd = CCDData.read('my_file.fits', unit="adu") # doctest: +SKIP

If there is a unit in the FITS file (in the BUNIT keyword), that will be used, but a unit explicitly provided in read will
override any unit in the FITS file.

There is no restriction at all on what the unit can be – any unit in astropy.units or that you create yourself will work.

In addition, the user can specify the extension in a FITS file to use:

>>> ccd = CCDData.read('my_file.fits', hdu=1, unit="adu") # doctest: +SKIP

If hdu is not specified, it will assume the data is in the primary extension. If there is no data in the primary extension,
the first extension with data will be used.

10.1.2 Getting data out

A CCDData object behaves like a numpy array (masked if the CCDData mask is set) in expressions, and the underlying
data (ignoring any mask) is accessed through data attribute:

>>> ccd_masked = CCDData([1, 2, 3], unit="adu", mask=[0, 0, 1])
>>> res = 2 * np.ones(3) * ccd_masked
>>> res.mask # one return value will be masked
array([False, False, True]...)
>>> 2 * np.ones(3) * ccd_masked.data # doctest: +FLOAT_CMP
array([ 2., 4., 6.])

You can force conversion to a numpy array with:

>>> np.asarray(ccd_masked)
array([1, 2, 3])
>>> np.ma.array(ccd_masked.data, mask=ccd_masked.mask) # doctest: +SKIP

A method for converting a CCDData object to a FITS HDU list is also available. It converts the metadata to a FITS
header:

>>> hdulist = ccd_masked.to_hdu()

You can also write directly to a FITS file:

>>> ccd_masked.write('my_image.fits')

10.2 Essential properties

10.2.1 Metadata

When initializing from a FITS file, the header property is initialized using the header of the FITS file. Metadata is
optional, and can be provided by any dictionary or dict-like object:

>>> ccd_simple = CCDData(np.arange(10), unit="adu")
>>> my_meta = {'observer': 'Edwin Hubble', 'exposure': 30.0}
>>> ccd_simple.header = my_meta # or use ccd_simple.meta = my_meta

Whether the metadata is case sensitive or not depends on how it is initialized. A FITS header, for example, is not case
sensitive, but a python dictionary is.

36 Chapter 10. Using the CCDData image class: I/O, properties and arithmetic

http://docs.astropy.org/en/stable/units/index.html#module-astropy.units
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

10.2.2 Masks and flags

Although not required when a CCDData image is created you can also specify a mask and/or flags.

A mask is a boolean array the same size as the data in which a value of True indicates that a particular pixel should be
masked, i.e. not be included in arithmetic operations or aggregation.

Flags are one or more additional arrays (of any type) whose shape matches the shape of the data. For more details on
setting flags see astropy.nddata.NDData.

10.2.3 WCS

The wcs attribute of CCDData object can be set two ways.

• If the CCDData object is created from a FITS file that has WCS keywords in the header, the wcs attribute is set
to a astropy.wcs.WCS object using the information in the FITS header.

• The WCS can also be provided when the CCDData object is constructed with the wcs argument.

Either way, the wcs attribute is kept up to date if the CCDData image is trimmed.

10.2.4 Uncertainty

Pixel-by-pixel uncertainty can be calculated for you:

>>> data = np.random.normal(size=(10, 10), loc=1.0, scale=0.1)
>>> ccd = CCDData(data, unit="electron")
>>> ccd_new = ccdproc.create_deviation(ccd, readnoise=5 * u.electron)

See Gain correct and create deviation image for more details.

You can also set the uncertainty directly, either by creating a StdDevUncertainty object first:

>>> from astropy.nddata.nduncertainty import StdDevUncertainty
>>> uncertainty = 0.1 * ccd.data # can be any array whose shape matches the data
>>> my_uncertainty = StdDevUncertainty(uncertainty)
>>> ccd.uncertainty = my_uncertainty

or by providing a ndarray with the same shape as the data:

>>> ccd.uncertainty = 0.1 * ccd.data # doctest: +ELLIPSIS
INFO: array provided for uncertainty; assuming it is a StdDevUncertainty. [...]

In this case the uncertainty is assumed to be StdDevUncertainty. Using StdDevUncertainty is required to enable
error propagation in CCDData

If you want access to the underlying uncertainty use its .array attribute:

>>> ccd.uncertainty.array # doctest: +ELLIPSIS
array(...)

10.3 Arithmetic with images

Methods are provided to perform arithmetic operations with a CCDData image and a number, an astropy Quantity (a
number with units) or another CCDData image.

10.3. Arithmetic with images 37

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.StdDevUncertainty.html#astropy.nddata.StdDevUncertainty
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.StdDevUncertainty.html#astropy.nddata.StdDevUncertainty
http://docs.astropy.org/en/stable/api/astropy.nddata.StdDevUncertainty.html#astropy.nddata.StdDevUncertainty
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

Using these methods propagates errors correctly (if the errors are uncorrelated), take care of any necessary unit con-
versions, and apply masks appropriately. Note that the metadata of the result is not set if the operation is between two
CCDData objects.

>>> result = ccd.multiply(0.2 * u.adu)
>>> uncertainty_ratio = result.uncertainty.array[0, 0]/ccd.uncertainty.array[0, 0]
>>> round(uncertainty_ratio, 5) # doctest: +FLOAT_CMP
0.2
>>> result.unit
Unit("adu electron")

Note: In most cases you should use the functions described in Reduction toolbox to perform common operations like
scaling by gain or doing dark or sky subtraction. Those functions try to construct a sensible header for the result and
provide a mechanism for logging the action of the function in the header.

The arithmetic operators *, /, + and - are not overridden.

Note: If two images have different WCS values, the wcs on the first CCDData object will be used for the resultant
object.

38 Chapter 10. Using the CCDData image class: I/O, properties and arithmetic

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


CHAPTER 11

Combining images and generating masks from clipping

Note: No attempt has been made yet to optimize memory usage in Combiner. A copy is made, and a mask array
constructed, for each input image.

The first step in combining a set of images is creating a Combiner instance:

>>> from astropy import units as u
>>> from astropy.nddata import CCDData
>>> from ccdproc import Combiner
>>> import numpy as np
>>> ccd1 = CCDData(np.random.normal(size=(10,10)),
... unit=u.adu)
>>> ccd2 = ccd1.copy()
>>> ccd3 = ccd1.copy()
>>> combiner = Combiner([ccd1, ccd2, ccd3])

The combiner task really combines two things: generation of masks for individual images via several clipping tech-
niques and combination of images.

11.1 Image masks and clipping

There are currently three methods of clipping. None affect the data directly; instead each constructs a mask that is
applied when images are combined.

Masking done by clipping operations is combined with the image mask provided when the Combiner is created.

11.1.1 Min/max clipping

minmax_clipping masks all pixels above or below user-specified levels. For example, to mask all values above the
value 0.1 and below the value -0.3:

39



ccdproc Documentation, Release 2.0.1

>>> combiner.minmax_clipping(min_clip=-0.3, max_clip=0.1)

Either min_clip or max_clip can be omitted.

11.1.2 Sigma clipping

For each pixel of an image in the combiner, sigma_clipping masks the pixel if is more than a user-specified number
of deviations from the central value of that pixel in the list of images.

The sigma_clipping method is very flexible: you can specify both the function for calculating the central value and
the function for calculating the deviation. The default is to use the mean (ignoring any masked pixels) for the central
value and the standard deviation (again ignoring any masked values) for the deviation.

You can mask pixels more than 5 standard deviations above or 2 standard deviations below the median with

>>> combiner.sigma_clipping(low_thresh=2, high_thresh=5, func=np.ma.median)

Note: Numpy masked median can be very slow in exactly the situation typically encountered in reducing ccd data:
a cube of data in which one dimension (in the case the number of frames in the combiner) is much smaller than the
number of pixels.

11.1.3 Extrema clipping

For each pixel position in the input arrays, the algorithm will mask the highest nhigh and lowest nlow pixel values. The
resulting image will be a combination of Nimages-nlow-nhigh pixel values instead of the combination of Nimages
worth of pixel values.

You can mask the lowest pixel value and the highest two pixel values with:

>>> combiner.clip_extrema(nlow=1, nhigh=2)

11.1.4 Iterative clipping

To clip iteratively, continuing the clipping process until no more pixels are rejected, loop in the code calling the
clipping method:

>>> old_n_masked = 0 # dummy value to make loop execute at least once
>>> new_n_masked = combiner.data_arr.mask.sum()
>>> while (new_n_masked > old_n_masked):
... combiner.sigma_clipping(func=np.ma.median)
... old_n_masked = new_n_masked
... new_n_masked = combiner.data_arr.mask.sum()

Note that the default values for the high and low thresholds for rejection are 3 standard deviations.

11.2 Image combination

Image combination is straightforward; to combine by taking the average, excluding any pixels mapped by clipping:

40 Chapter 11. Combining images and generating masks from clipping



ccdproc Documentation, Release 2.0.1

>>> combined_average = combiner.average_combine()

Performing a median combination is also straightforward,

>>> combined_median = combiner.median_combine() # can be slow, see below

11.2.1 Combination with image scaling

In some circumstances it may be convenient to scale all images to some value before combining them. Do so by setting
scaling:

>>> scaling_func = lambda arr: 1/np.ma.average(arr)
>>> combiner.scaling = scaling_func
>>> combined_average_scaled = combiner.average_combine()

This will normalize each image by its mean before combining (note that the underlying images are not scaled; scaling
is only done as part of combining using average_combine or median_combine).

11.3 Combination with image transformation and alignment

Note: Flux conservation Whether flux is conserved in performing the reprojection depends on the method you use
for reprojecting and the extent to which pixel area varies across the image. wcs_project rescales counts by the ratio
of pixel area of the pixel indicated by the keywords CRPIX of the input and output images.

The reprojection methods available are described in detail in the documentation for the reproject project; consult those
documents for details.

You should carefully check whether flux conservation provided in CCDPROC is adequate for your needs. Suggestions
for improvement are welcome!

Align and then combine images based on World Coordinate System (WCS) information in the image headers in two
steps.

First, reproject each image onto the same footprint using wcs_project. The example below assumes you have an
image with WCS information and another image (or WCS) onto which you want to project your images:

>>> from ccdproc import wcs_project
>>> reprojected_image = wcs_project(input_image, target_wcs)

Repeat this for each of the images you want to combine, building up a list of reprojected images:

>>> reprojected = []
>>> for img in my_list_of_images:
... new_image = wcs_project(img, target_wcs)
... reprojected.append(new_image)

Then, combine the images as described above for any set of images:

>>> combiner = Combiner(reprojected)
>>> stacked_image = combiner.average_combine()

11.3. Combination with image transformation and alignment 41

http://reproject.readthedocs.io/


ccdproc Documentation, Release 2.0.1

42 Chapter 11. Combining images and generating masks from clipping



CHAPTER 12

Reduction toolbox

Note: This is not intended to be an introduction to image reduction. While performing the steps presented here may
be the correct way to reduce data in some cases, it is not correct in all cases.

A much more detailed guide to CCD data reduction is available

12.1 Logging in ccdproc

All logging in ccdproc is done in the sense of recording the steps performed in image metadata. if you want to do
logging in the python sense of the word please see those docs.

There are basically three logging options:

1. Implicit logging: No setup or keywords needed, each of the functions below adds a note to the metadata when
it is performed.

2. Explicit logging: You can specify what information is added to the metadata using the add_keyword argument
for any of the functions below.

3. No logging: If you prefer no logging be done you can “opt-out” by calling each function with
add_keyword=None.

12.2 Gain correct and create deviation image

12.2.1 Uncertainty

An uncertainty can be calculated from your data with create_deviation:

43

https://mwcraig.github.io/ccd-as-book/00-00-Preface
https://docs.python.org/library/logging.html


ccdproc Documentation, Release 2.0.1

>>> from astropy import units as u
>>> import numpy as np
>>> from astropy.nddata import CCDData
>>> import ccdproc
>>> img = np.random.normal(loc=10, scale=0.5, size=(100, 232))
>>> data = CCDData(img, unit=u.adu)
>>> data_with_deviation = ccdproc.create_deviation(
... data, gain=1.5 * u.electron/u.adu,
... readnoise=5 * u.electron)
>>> data_with_deviation.header['exposure'] = 30.0 # for dark subtraction

The uncertainty, 𝑢𝑖𝑗 , at pixel (𝑖, 𝑗) with value 𝑝𝑖𝑗 is calculated as

𝑢𝑖𝑗 =
(︀
𝑔 * 𝑝𝑖𝑗 + 𝜎2

𝑟𝑛

)︀ 1
2 ,

where 𝜎𝑟𝑛 is the read noise. Gain is only necessary when the image units are different than the units of the read noise,
and is used only to calculate the uncertainty. The data itself is not scaled by this function.

As with all of the functions in ccdproc, the input image is not modified.

In the example above the new image data_with_deviation has its uncertainty set.

12.2.2 Gain

To apply a gain to an image, do:

>>> gain_corrected = ccdproc.gain_correct(data_with_deviation, 1.5*u.electron/u.adu)

The result gain_corrected has its data and uncertainty scaled by the gain and its unit updated.

There are several ways to provide the gain, among them as an astropy.units.Quantity, as in the example above,
as a ccdproc.Keyword. See to documentation for gain_correct for details.

12.3 Clean image

There are two ways to clean an image of cosmic rays. One is to use clipping to create a mask for a stack of images, as
described in Image masks and clipping.

The other is to replace, in a single image, each pixel that is several standard deviations from a central value in a region
surrounding that pixel. The methods below describe how to do that.

12.3.1 LACosmic

The lacosmic technique identifies cosmic rays by identifying pixels based on a variation of the Laplacian edge de-
tection. The algorithm is an implementation of the code describe in van Dokkum (2001)1 as implemented in [astro-
scrappy](https://github.com/astropy/astroscrappy)2.

Use this technique with cosmicray_lacosmic:

>>> cr_cleaned = ccdproc.cosmicray_lacosmic(gain_corrected, sigclip=5)

1 van Dokkum, P; 2001, “Cosmic-Ray Rejection by Laplacian Edge Detection”. The Publications of the Astronomical Society of the Pacific,
Volume 113, Issue 789, pp. 1420-1427. doi: 10.1086/323894

2 McCully, C., 2014, “Astro-SCRAPPY”, https://github.com/astropy/astroscrappy

44 Chapter 12. Reduction toolbox

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy


ccdproc Documentation, Release 2.0.1

12.3.2 median

Another cosmic ray cleaning algorithm available in ccdproc is cosmicray_median that is analogous to
iraf.imred.crutil.crmedian. This technique can be used with ccdproc.cosmicray_median:

>>> cr_cleaned = ccdproc.cosmicray_median(gain_corrected, mbox=11,
... rbox=11, gbox=5)

Although ccdproc provides functions for identifying outlying pixels and for calculating the deviation of the back-
ground you are free to provide your own error image instead.

There is one additional argument, gbox, that specifies the size of the box, centered on a outlying pixel, in which pixel
should be grown. The argument rbox specifies the size of the box used to calculate a median value if values for bad
pixels should be replaced.

12.4 Indexing: python and FITS

Overscan subtraction and image trimming are done with two separate functions. Both are straightforward to use once
you are familiar with python’s rules for array indexing; both have arguments that allow you to specify the part of the
image you want in the FITS standard way. The difference between python and FITS indexing is that python starts
indexes at 0, FITS starts at 1, and the order of the indexes is switched (FITS follows the FORTRAN convention for
array ordering, python follows the C convention).

The examples below include both python-centric versions and FITS-centric versions to help illustrate the differences
between the two.

Consider an image from a FITS file in which NAXIS1=232 and NAXIS2=100, in which the last 32 columns along NAXIS1
are overscan.

In FITS parlance, the overscan is described by the region [201:232, 1:100].

If that image has been read into a python array img by astropy.io.fits then the overscan is img[0:100, 200:232]
(or, more compactly img[:, 200:]), the starting value of the first index implicitly being zero, and the ending value
for both indices implicitly the last index).

One aspect of python indexing may particularly surprising to newcomers: indexing goes up to but not including the
end value. In img[0:100, 200:232] the end value of the first index is 99 and the second index is 231, both what you
would expect given that python indexing starts at zero, not one.

Those transitioning from IRAF to ccdproc do not need to worry about this too much because the functions for overscan
subtraction and image trimming both allow you to use the familiar BIASSEC and TRIMSEC conventions for specifying
the overscan and region to be retained in a trim.

12.5 Subtract overscan and trim images

Note:

• Images reduced with ccdproc do NOT have to come from FITS files. The discussion below is intended to ease
the transition from the indexing conventions used in FITS and IRAF to python indexing.

• No bounds checking is done when trimming arrays, so indexes that are too large are silently set to the upper
bound of the array. This is because numpy, which provides the infrastructure for the arrays in ccdproc has this
behavior.

12.4. Indexing: python and FITS 45

http://docs.astropy.org/en/stable/io/fits/index.html#module-astropy.io.fits
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy


ccdproc Documentation, Release 2.0.1

12.5.1 Overscan subtraction

To subtract the overscan in our image from a FITS file in which NAXIS1=232 and NAXIS2=100, in which the last 32
columns along NAXIS1 are overscan, use subtract_overscan:

>>> # python-style indexing first
>>> oscan_subtracted = ccdproc.subtract_overscan(cr_cleaned,
... overscan=cr_cleaned[:, 200:],
... overscan_axis=1)
>>> # FITS/IRAF-style indexing to accomplish the same thing
>>> oscan_subtracted = ccdproc.subtract_overscan(cr_cleaned,
... fits_section='[201:232,1:100]',
... overscan_axis=1)

Note well that the argument overscan_axis always follows the python convention for axis ordering. Since the order
of the indexes in the fits_section get switched in the (internal) conversion to a python index, the overscan axis ends
up being the second axis, which is numbered 1 in python zero-based numbering.

With the arguments in this example the overscan is averaged over the overscan columns (i.e. 200 through 231) and
then subtracted row-by-row from the image. The median argument can be used to median combine instead.

This example is not very realistic: typically one wants to fit a low-order polynomial to the overscan region and subtract
that fit:

>>> from astropy.modeling import models
>>> poly_model = models.Polynomial1D(1) # one-term, i.e. constant
>>> oscan_subtracted = ccdproc.subtract_overscan(cr_cleaned,
... overscan=cr_cleaned[:, 200:],
... overscan_axis=1,
... model=poly_model)

See the documentation for astropy.modeling.polynomial for more examples of the available models and for a
description of creating your own model.

12.5.2 Trim an image

The overscan-subtracted image constructed above still contains the overscan portion. We are assuming came from a
FITS file in which NAXIS1=232 and NAXIS2=100, in which the last 32 columns along NAXIS1 are overscan.

Trim it using trim_image,shown below in both python- style and FITS-style indexing:

>>> # FITS-style:
>>> trimmed = ccdproc.trim_image(oscan_subtracted,
... fits_section='[1:200, 1:100]')
>>> # python-style:
>>> trimmed = ccdproc.trim_image(oscan_subtracted[:, :200])

Note again that in python the order of indices is opposite that assumed in FITS format, that the last value in an index
means “up to, but not including”, and that a missing value implies either first or last value.

Those familiar with python may wonder what the point of trim_image is; it looks like simply indexing
oscan_subtracted would accomplish the same thing. The only additional thing trim_image does is to make a
copy of the image before trimming it.

Note: By default, python automatically reduces array indices that extend beyond the actual length of the array to
the actual length. In practice, this means you can supply an invalid shape for, e.g. trimming, and an error will not

46 Chapter 12. Reduction toolbox

http://docs.astropy.org/en/stable/modeling/index.html#module-astropy.modeling.polynomial


ccdproc Documentation, Release 2.0.1

be raised. To make this concrete, ccdproc.trim_image(oscan_subtracted[:, :200000000]) will be treated as if
you had put in the correct upper bound, 200.

12.6 Subtract bias and dark

Both of the functions below propagate the uncertainties in the science and calibration images if either or both is
defined.

Assume in this section that you have created a master bias image called master_bias and a master dark image called
master_dark that has been bias-subtracted so that it can be scaled by exposure time if necessary.

Subtract the bias with subtract_bias:

>>> fake_bias_data = np.random.normal(size=trimmed.shape) # just for illustration
>>> master_bias = CCDData(fake_bias_data, unit=u.electron,
... mask=np.zeros(trimmed.shape))
>>> bias_subtracted = ccdproc.subtract_bias(trimmed, master_bias)

There are several ways you can specify the exposure times of the dark and science images; see subtract_dark for a
full description.

In the example below we assume there is a keyword exposure in the metadata of the trimmed image and the master
dark and that the units of the exposure are seconds (note that you can instead explicitly provide these times).

To perform the dark subtraction use subtract_dark:

>>> master_dark = master_bias.multiply(0.1) # just for illustration
>>> master_dark.header['exposure'] = 15.0
>>> dark_subtracted = ccdproc.subtract_dark(bias_subtracted, master_dark,
... exposure_time='exposure',
... exposure_unit=u.second,
... scale=True)

Note that scaling of the dark is not done by default; use scale=True to scale.

12.7 Correct flat

Given a flat frame called master_flat, use flat_correct to perform this calibration:

>>> fake_flat_data = np.random.normal(loc=1.0, scale=0.05, size=trimmed.shape)
>>> master_flat = CCDData(fake_flat_data, unit=u.electron)
>>> reduced_image = ccdproc.flat_correct(dark_subtracted, master_flat)

As with the additive calibrations, uncertainty is propagated in the division.

The flat is scaled by the mean of master_flat before dividing.

If desired, you can specify a minimum value the flat can have (e.g. to prevent division by zero). Any pixels in the flat
whose value is less than min_value are replaced with min_value):

>>> reduced_image = ccdproc.flat_correct(dark_subtracted, master_flat,
... min_value=0.9)

12.6. Subtract bias and dark 47



ccdproc Documentation, Release 2.0.1

12.8 Basic Processing with a single command

All of the basic processing steps can be accomplished in a single step using ccd_process. This step will call overscan
correct, trim, gain correct, add a bad pixel mask, create an uncertainty frame, subtract the master bias, and flat-field
the image. The unit of the master calibration frames must match that of the image after the gain, if any, is applied. In
the example below, img has unit adu, but the master frames have unit electron. These can be run together as:

>>> ccd = CCDData(img, unit=u.adu)
>>> ccd.header['exposure'] = 30.0 # for dark subtraction
>>> nccd = ccdproc.ccd_process(ccd, oscan='[201:232,1:100]',
... trim='[1:200, 1:100]',
... error=True,
... gain=2.0*u.electron/u.adu,
... readnoise=5*u.electron,
... dark_frame=master_dark,
... exposure_key='exposure',
... exposure_unit=u.second,
... dark_scale=True,
... master_flat=master_flat)

12.9 Reprojecting onto a different image footprint

An image with coordinate information (WCS) can be reprojected onto a different image footprint. The underlying
functionality is proved by the reproject project. Please see Combination with image transformation and alignment for
more details.

12.10 Data Quality Flags (Bitfields and bitmasks)

Some FITS files contain data quality flags or bitfield extension, while these are currently not supported as
part of CCDData these can be loaded manually using fits and converted to regular (numpy-like) masks (with
bitfield_to_boolean_mask) that are supported by many operations in ccdproc.

import numpy as np
from astropy.io import fits
from ccdproc import bitfield_to_boolean_mask, CCDData

fitsfilename = 'some_fits_file.fits'
bitfieldextension = extensionname_or_extensionnumber

# Read the data of the fits file as CCDData object
ccd = CCDData.read(fitsfilename)

# Open the file again (assuming the bitfield is saved in the same FITS file)
mask = bitfield_to_boolean_mask(fits.getdata(fitsfilename, bitfieldextension))

# Save the mask as "mask" attribute of the ccd
ccd.mask = mask

Another method for creating a mask is using the ccdmask task. This task will produced a data aray where good pixels
have a value of zero and bad pixels have a value of one. This task follows the same algorithm used in the iraf ccdmask
task.

48 Chapter 12. Reduction toolbox

http://reproject.readthedocs.io/
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/io/fits/index.html#module-astropy.io.fits
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy


ccdproc Documentation, Release 2.0.1

>>> ccd.mask = ccdproc.ccdmask(ccd, ncmed=7, nlmed=7, ncsig=15, nlsig=15,
... lsigma=9, hsigma=9, ngood=5)

12.11 Filter and Convolution

There are several convolution and filter functions for numpy.ndarray across the scientific python packages:

• scipy.ndimage.filters, offers a variety of filters.

• astropy.convolution, offers some filters which also handle NaN values.

• scikit-image.filters, offers several filters which can also handle masks but are mostly limited to special
data types (mostly unsigned integers).

For convenience one of these is also accessible through the ccdproc package namespace which accepts CCDData
objects and then also returns one:

• median_filter

12.11.1 Median Filter

The median filter is especially useful if the data contains sharp noise peaks which should be removed rather than
propagated:

import ccdproc
from astropy.nddata import CCDData
import numpy as np
import matplotlib.pyplot as plt
from astropy.modeling.functional_models import Gaussian2D
from astropy.utils.misc import NumpyRNGContext
from scipy.ndimage import uniform_filter

# Create some source signal
source = Gaussian2D(60, 70, 70, 20, 25)
data = source(*np.mgrid[0:250, 0:250])

# and another one
source = Gaussian2D(70, 150, 180, 15, 15)
data += source(*np.mgrid[0:250, 0:250])

# create some random signals
with NumpyRNGContext(1234):

noise = np.random.exponential(40, (250, 250))
# remove low signal
noise[noise < 100] = 0
data += noise

# create a CCD object based on the data
ccd = CCDData(data, unit='adu')

# Create some plots
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
ax1.set_title('Unprocessed')
ax1.imshow(ccd, origin='lower', interpolation='none', cmap=plt.cm.gray)
ax2.set_title('Mean filtered')

(continues on next page)

12.11. Filter and Convolution 49

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

(continued from previous page)

ax2.imshow(uniform_filter(ccd.data, 5), origin='lower', interpolation='none', cmap=plt.cm.gray)
ax3.set_title('Median filtered')
ax3.imshow(ccdproc.median_filter(ccd, 5), origin='lower', interpolation='none', cmap=plt.cm.gray)
plt.tight_layout()
plt.show()

12.12 Working with multi-extension FITS image files

Multi-extension FITS (MEF) image files cannot be processed natively in ccdproc. The example below illustrates how
to flat_correct all of the extensions in a MEF and write out the calibrated file as a MEF. Applying other reduction
steps would be similar.

>>> from astropy.utils.data import get_pkg_data_filename
>>> from astropy.io import fits
>>> from astropy.nddata import CCDData
>>> from ccdproc import flat_correct
>>>
>>> # Read sample images included in ccdproc
>>> science_name = get_pkg_data_filename('data/science-mef.fits',
... package='ccdproc.tests')
>>> flat_name = get_pkg_data_filename('data/flat-mef.fits',
... package='ccdproc.tests')
>>> science_mef = fits.open(science_name)
>>> flat_mef = fits.open(flat_name)
>>>
>>> new = []
>>>
>>> # This assumes the primary header just has metadata
>>> new.append(science_mef[0])
>>>
>>> # The code below will preserve each image's header
>>> for science_hdu, flat_hdu in zip(science_mef[1:], flat_mef[1:]):
... # Make a CCDData from this science image extension
... science = CCDData(data=science_hdu.data,
... header=science_hdu.header,
... unit=science_hdu.header['unit'])
...
... # Make a CCDData from this flat image extension
... flat = CCDData(data=flat_hdu.data,
... header=flat_hdu.header,
... unit=science_hdu.header['unit'])
...
... # Calibrate the science image
... science_cal = flat_correct(science, flat)
...
... # Turn the calibrated image into an image HDU
... as_hdu = fits.ImageHDU(data=science_cal.data,
... header=science_cal.header)
...
... # Add this hdu to the list of calibrated HDUs
... new.append(as_hdu)
>>> # Write out the new MEF
>>> as_hdulist = fits.HDUList(new)
>>> as_hdulist.writeto('science_cal.fits')

(continues on next page)

50 Chapter 12. Reduction toolbox



ccdproc Documentation, Release 2.0.1

(continued from previous page)

>>> # Close the input files
>>> science_mef.close()
>>> flat_mef.close()

12.12. Working with multi-extension FITS image files 51



ccdproc Documentation, Release 2.0.1

52 Chapter 12. Reduction toolbox



CHAPTER 13

Image Management

13.1 Working with a directory of images

For the sake of argument all of the examples below assume you are working in a directory that contains FITS images.

The class ImageFileCollection is meant to make working with a directory of FITS images easier by allowing you
select the files you act on based on the values of FITS keywords in their headers or based on Unix shell-style filename
matching.

It is initialized with the name of a directory containing FITS images and a list of FITS keywords you want the
ImageFileCollection to be aware of. An example initialization looks like:

>>> from ccdproc import ImageFileCollection
>>> from ccdproc.utils.sample_directory import sample_directory_with_files
>>> keys = ['imagetyp', 'object', 'filter', 'exposure']
>>> dir = sample_directory_with_files()
>>> ic1 = ImageFileCollection(dir, keywords=keys) # only keep track of keys

You can use the wildcard * in place of a list to indicate you want the collection to use all keywords in the headers:

>>> ic_all = ImageFileCollection(dir, keywords='*')

Normally identification of FITS files is done by looking at the file extension and including all files with the correct
extension.

If the files are not compressed (e.g. not gzipped) then you can force the image collection to open each file and check
from its contents whether it is FITS by using the find_fits_by_reading argument:

>> ic_from_content = ImageFileCollection(dir, find_fits_by_reading=True)

You can indicate filename patterns to include or exclude using Unix shell-style expressions. For example, to include
all filenames that begin with 1d_ but not ones that include the word bad, you could do:

>>> ic_all = ImageFileCollection(dir, glob_include='1d_*',
... glob_exclude='*bad*')

53



ccdproc Documentation, Release 2.0.1

Alternatively, you can create the collection with an explicit list of file names:

>>> ic_names = ImageFileCollection(filenames=['a.fits', '/some/path/b.fits.gz'])

Most of the useful interaction with the image collection is via its .summary property, a Table of the value of each
keyword for each file in the collection:

>>> ic1.summary.colnames
['file', 'imagetyp', 'object', 'filter', 'exposure']
>>> ic_all.summary.colnames
# long list of keyword names omitted

Note that the name of the file is automatically added to the table as a column named file.

13.2 Selecting files

Selecting the files that match a set of criteria, for example all images in the I band with exposure time less than 60
seconds you could do:

>>> matches = (ic1.summary['filter'] == 'R') & (ic1.summary['exposure'] < 15)
>>> my_files = ic1.summary['file'][matches]

The column file is added automatically when the image collection is created.

For more simple selection, when you just want files whose keywords exactly match particular values, say all I band
images with exposure time of 30 seconds, there is a convenience method .files_filtered:

>>> my_files = ic1.files_filtered(filter='R', exposure=15)

The optional arguments to files_filtered are used to filter the list of files.

Python regular expression patterns can also be used as the value if the regex_match flag is set. For example, to find
all of the images whose object is in the Kelt exoplanet survey, you might do:

>>> my_files = ic1.files_filtered(regex_match=True, object='kelt.*')

To get all of the images that have image type BIAS or LIGHT you can also use a regular expression pattern:

>>> my_files = ic1.files_filtered(regex_match=True,
... imagetyp='bias|light')

Note that regular expression is different, and much more flexible than, file name matching (or “globbing”) at the
command line. The Python documentation on the re module is useful for learning about regular expressions.

Finally, a new ImageFileCollection can be created with by providing a list of keywords. The example below makes
a new collection containing the files whose imagetyp is BIAS or LIGHT:

>>> new_ic = ic1.filter(regex_match=True,
... imagetyp='bias|light')

13.3 Sorting files

Sometimes it is useful to bring the files into a specific order, e.g. if you make a plot for each object you probably want
all images of the same object next to each other. To do this, the images in a collection can be sorted with the sort
method using the fits header keys in the same way you would sort a Table:

54 Chapter 13. Image Management

http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3.7/library/re.html#module-re
http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table


ccdproc Documentation, Release 2.0.1

>>> ic1.sort(['exposure', 'imagetyp'])

13.4 Iterating over hdus, headers, data, or ccds

Four methods are provided for iterating over the images in the collection, optionally filtered by keyword values.

For example, to iterate over all of the I band images with exposure of 30 seconds, performing some basic operation on
the data (very contrived example):

>>> for hdu in ic1.hdus(imagetyp='LiGhT', filter='R', exposure=15):
... hdu.header['exposure']
... new_data = hdu.data - hdu.data.mean()
15.0

Note that the names of the arguments to hdus here are the names of FITS keywords in the collection and the values
are the values of those keywords you want to select. Note also that string comparisons are not case sensitive.

The other iterators are headers, data, and ccds.

All of them have the option to also provide the file name in addition to the hdu (or header or data):

>>> for hdu, fname in ic1.hdus(return_fname=True,
... imagetyp='LiGhT', filter='R', exposure=15):
... hdu.header['meansub'] = True
... hdu.data = hdu.data - hdu.data.mean()
... hdu.writeto(fname + '.new')

That last use case, doing something to several files and saving them somewhere afterwards, is common enough that
the iterators provide arguments to automate it.

13.5 Automatic saving from the iterators

There are three ways of triggering automatic saving.

1. One is with the argument save_with_name; it adds the value of the argument to the file name between the original
base name and extension. The example below has (almost) the same effect of the example above, subtracting the mean
from each image and saving to a new file:

>>> for hdu in ic1.hdus(save_with_name='_new',
... imagetyp='LiGhT', filter='R', exposure=15):
... hdu.header['meansub'] = True
... hdu.data = hdu.data - hdu.data.mean()

It saves, in the location of the image collection, a new FITS file with the mean subtracted from the data, with _new
added to the name; as an example, if one of the files iterated over was intput001.fit then a new file, in the same
directory, called input001_new.fit would be created.

2. You can also provide the directory to which you want to save the files with save_location; note that you do not
need to actually do anything to the hdu (or header or data) to cause the copy to be made. The example below copies
all of the I band images with 30 second exposure from the original location to other_dir:

>>> for hdu in ic1.hdus(save_location='other_dir',
... imagetyp='LiGhT', filter='I', exposure=30):
... pass

13.4. Iterating over hdus, headers, data, or ccds 55



ccdproc Documentation, Release 2.0.1

This option can be combined with the previous one to also give the files a new name.

3. Finally, if you want to live dangerously, you can overwrite the files in the same location with the overwrite
argument; use it carefully because it preserves no backup. The example below replaces each of the I band images with
30 second exposure with a file that has had the mean subtracted:

>>> for hdu in ic1.hdus(overwrite=True,
... imagetyp='LiGhT', filter='R', exposure=15):
... hdu.header['meansub'] = True
... hdu.data = hdu.data - hdu.data.mean()

Note: This functionality is not currently available on Windows.

56 Chapter 13. Image Management



CHAPTER 14

Reduction examples and tutorial

Here are some examples and different repositories using ccdproc.

• Extended guide to image calibration using ccdproc

• ipython notebook

• WHT basic reductions

• pyhrs

• reduceccd

• astrolib

• mont4k_reduction Processes multi-image-extension FITS files

57

https://mwcraig.github.io/ccd-as-book/00-00-Preface
http://nbviewer.ipython.org/gist/mwcraig/06060d789cc298bbb08e
https://github.com/crawfordsm/wht_reduction_scripts/blob/master/wht_basic_reductions.py
https://github.com/saltastro/pyhrs
https://github.com/rgbIAA/reduceccd
https://github.com/yucelkilic/astrolib
https://github.com/bjweiner/ARTN/tree/master/mont4k_pipeline


ccdproc Documentation, Release 2.0.1

58 Chapter 14. Reduction examples and tutorial



CHAPTER 15

API Reference

15.1 ccdproc Package

The ccdproc package is a collection of code that will be helpful in basic CCD processing. These steps will allow
reduction of basic CCD data as either a stand-alone processing or as part of a pipeline.

15.1.1 Functions

background_deviation_box(data, bbox) Determine the background deviation with a box size of
bbox.

background_deviation_filter(data, bbox) Determine the background deviation for each pixel from
a box with size of bbox.

bitfield_to_boolean_mask(bitfield[, . . . ]) Convert an integer bit field to a boolean mask.
block_average(ccd, block_size) Like block_reduce but with predefined func=np.

mean.
block_reduce(ccd, block_size[, func]) Thin wrapper around astropy.nddata.

block_reduce.
block_replicate(ccd, block_size[, conserve_sum]) Thin wrapper around astropy.nddata.

block_replicate.
ccd_process(ccd[, oscan, trim, error, . . . ]) Perform basic processing on ccd data.
ccdmask(ratio[, findbadcolumns, byblocks, . . . ]) Uses method based on the IRAF ccdmask task to gener-

ate a mask based on the given input.
combine(img_list[, output_file, method, . . . ]) Convenience function for combining multiple images.
cosmicray_lacosmic(ccd[, sigclip, sigfrac, . . . ]) Identify cosmic rays through the lacosmic technique.
cosmicray_median(ccd[, error_image, thresh, . . . ]) Identify cosmic rays through median technique.
create_deviation(ccd_data[, gain, . . . ]) Create a uncertainty frame.
flat_correct(ccd, flat[, min_value, norm_value]) Correct the image for flat fielding.
gain_correct(ccd, gain[, gain_unit]) Correct the gain in the image.
median_filter(data, \*args, \*\*kwargs) See scipy.ndimage.median_filter for arguments.

Continued on next page

59

http://docs.astropy.org/en/stable/api/astropy.nddata.block_reduce.html#astropy.nddata.block_reduce
http://docs.astropy.org/en/stable/api/astropy.nddata.block_reduce.html#astropy.nddata.block_reduce
http://docs.astropy.org/en/stable/api/astropy.nddata.block_replicate.html#astropy.nddata.block_replicate
http://docs.astropy.org/en/stable/api/astropy.nddata.block_replicate.html#astropy.nddata.block_replicate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter


ccdproc Documentation, Release 2.0.1

Table 1 – continued from previous page
rebin(ccd, newshape) Deprecated since version 1.1.

sigma_func(arr[, axis]) Robust method for calculating the deviation of an array.
subtract_bias(ccd, master[, add_keyword]) Subtract master bias from image.
subtract_dark(ccd, master[, dark_exposure, . . . ]) Subtract dark current from an image.
subtract_overscan(ccd[, overscan, . . . ]) Subtract the overscan region from an image.
test([package, test_path, args, plugins, . . . ]) Run the tests using py.test.
transform_image(ccd, transform_func, \*\*kwargs) Transform the image.
trim_image(ccd[, fits_section, add_keyword]) Trim the image to the dimensions indicated.
wcs_project(ccd, target_wcs[, target_shape, . . . ]) Given a CCDData image with WCS, project it onto a

target WCS and return the reprojected data as a new
CCDData image.

background_deviation_box

ccdproc.background_deviation_box(data, bbox)
Determine the background deviation with a box size of bbox. The algorithm steps through the image and
calculates the deviation within each box. It returns an array with the pixels in each box filled with the deviation
value.

Parameters

data
[numpy.ndarray or numpy.ma.MaskedArray] Data to measure background deviation.

bbox
[int] Box size for calculating background deviation.

Returns

background
[numpy.ndarray or numpy.ma.MaskedArray] An array with the measured background de-
viation in each pixel.

Raises

ValueError
A value error is raised if bbox is less than 1.

background_deviation_filter

ccdproc.background_deviation_filter(data, bbox)
Determine the background deviation for each pixel from a box with size of bbox.

Parameters

data
[numpy.ndarray] Data to measure background deviation.

bbox
[int] Box size for calculating background deviation.

60 Chapter 15. API Reference

http://pytest.org/latest
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


ccdproc Documentation, Release 2.0.1

Returns

background
[numpy.ndarray or numpy.ma.MaskedArray] An array with the measured background de-
viation in each pixel.

Raises

ValueError
A value error is raised if bbox is less than 1.

bitfield_to_boolean_mask

ccdproc.bitfield_to_boolean_mask(bitfield, ignore_bits=0, flip_bits=None)
Convert an integer bit field to a boolean mask.

Parameters

bitfield
[numpy.ndarray of integer dtype] The array of bit flags.

ignore_bits
[int, None or str, optional] The bits to ignore when converting the bitfield.

• If it’s an integer it’s binary representation is interpreted as the bits to ignore. 0 means that
all bit flags are taken into account while a binary representation of all 1 means that all
flags would be ignored.

• If it’s None then all flags are ignored

• If it’s a string then it must be a , or + separated string of integers that bits to ignore. If the
string starts with an ~ the integers are interpreted as the only flags to take into account.

Default is 0.

Returns

mask
[numpy.ndarray of boolean dtype] The bitfield converted to a boolean mask that can be
used for numpy.ma.MaskedArray or CCDData.

Examples

Bitfields (or data quality arrays) are integer arrays where the binary representation of the values indicates
whether a specific flag is set or not. The convention is that a value of 0 represents a good value and a
value that is != 0 represents a value that is in some (or multiple) ways considered a bad value. The
bitfield_to_boolean_mask function can be used by default to create a boolean mask wherever any bit flag is
set:

>>> import ccdproc
>>> import numpy as np
>>> ccdproc.bitfield_to_boolean_mask(np.arange(8))
array([False, True, True, True, True, True, True, True]...)

To ignore all bit flags ignore_bits=None can be used:

15.1. ccdproc Package 61

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits=None)
array([False, False, False, False, False, False, False, False]...)

To ignore only specific bit flags one can use a list of bits flags to ignore:

>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits=[1, 4])
array([False, False, True, True, False, False, True, True]...)

There are some equivalent ways:

>>> # pass in the sum of the "ignore_bits" directly
>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits=5) # 1 + 4
array([False, False, True, True, False, False, True, True]...)
>>> # use a comma seperated string of integers
>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits='1, 4')
array([False, False, True, True, False, False, True, True]...)
>>> # use a + seperated string of integers
>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits='1+4')
array([False, False, True, True, False, False, True, True]...)

Instead of directly specifying the bits flags to ignore one can also pass in the only bits that shouldn’t be
ignored by prepending a ~ to the string of ignore_bits (or if it’s not a string in ignore_bits one can set
flip_bits=True):

>>> # ignore all bit flags except the one for 2.
>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits='~(2)')
array([False, False, True, True, False, False, True, True]...)
>>> # ignore all bit flags except the one for 1, 8 and 32.
>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits='~(1, 8, 32)')
array([False, True, False, True, False, True, False, True]...)

>>> # Equivalent for a list using flip_bits.
>>> ccdproc.bitfield_to_boolean_mask(np.arange(8), ignore_bits=[1, 8, 32], flip_bits=True)
array([False, True, False, True, False, True, False, True]...)

block_average

ccdproc.block_average(ccd, block_size)
Like block_reduce but with predefined func=np.mean.

block_reduce

ccdproc.block_reduce(ccd, block_size, func=<function sum at 0x7fe1eafb0e18>)
Thin wrapper around astropy.nddata.block_reduce. Downsample a data array by applying a function to
local blocks.

If data is not perfectly divisible by block_size along a given axis then the data will be trimmed (from the end)
along that axis.

Parameters

data
[array_like] The data to be resampled.

62 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.block_reduce.html#astropy.nddata.block_reduce


ccdproc Documentation, Release 2.0.1

block_size
[int or array_like (int)] The integer block size along each axis. If block_size is a scalar and
data has more than one dimension, then block_size will be used for for every axis.

func
[callable, optional] The method to use to downsample the data. Must be a callable that takes
in a ndarray along with an axis keyword, which defines the axis along which the function
is applied. The default is sum, which provides block summation (and conserves the data
sum).

Returns

output
[array-like] The resampled data.

Examples

>>> import numpy as np
>>> from astropy.nddata.utils import block_reduce
>>> data = np.arange(16).reshape(4, 4)
>>> block_reduce(data, 2) # doctest: +SKIP
array([[10, 18],

[42, 50]])

>>> block_reduce(data, 2, func=np.mean) # doctest: +SKIP
array([[ 2.5, 4.5],

[ 10.5, 12.5]])

block_replicate

ccdproc.block_replicate(ccd, block_size, conserve_sum=True)
Thin wrapper around astropy.nddata.block_replicate. Upsample a data array by block replication.

Parameters

data
[array_like] The data to be block replicated.

block_size
[int or array_like (int)] The integer block size along each axis. If block_size is a scalar and
data has more than one dimension, then block_size will be used for for every axis.

conserve_sum
[bool, optional] If True (the default) then the sum of the output block-replicated data will
equal the sum of the input data.

Returns

output
[array_like] The block-replicated data.

15.1. ccdproc Package 63

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html#numpy.sum
http://docs.astropy.org/en/stable/api/astropy.nddata.block_replicate.html#astropy.nddata.block_replicate
https://docs.python.org/3/library/constants.html#True


ccdproc Documentation, Release 2.0.1

Examples

>>> import numpy as np
>>> from astropy.nddata.utils import block_replicate
>>> data = np.array([[0., 1.], [2., 3.]])
>>> block_replicate(data, 2) # doctest: +FLOAT_CMP
array([[0. , 0. , 0.25, 0.25],

[0. , 0. , 0.25, 0.25],
[0.5 , 0.5 , 0.75, 0.75],
[0.5 , 0.5 , 0.75, 0.75]])

>>> block_replicate(data, 2, conserve_sum=False) # doctest: +FLOAT_CMP
array([[0., 0., 1., 1.],

[0., 0., 1., 1.],
[2., 2., 3., 3.],
[2., 2., 3., 3.]])

ccd_process

ccdproc.ccd_process(ccd, oscan=None, trim=None, error=False, master_bias=None, dark_frame=None,
master_flat=None, bad_pixel_mask=None, gain=None, readnoise=None, os-
can_median=True, oscan_model=None, min_value=None, dark_exposure=None,
data_exposure=None, exposure_key=None, exposure_unit=None, dark_scale=False,
gain_corrected=True)

Perform basic processing on ccd data.

The following steps can be included:

• overscan correction (subtract_overscan())

• trimming of the image (trim_image())

• create deviation frame (create_deviation())

• gain correction (gain_correct())

• add a mask to the data

• subtraction of master bias (subtract_bias())

• subtraction of a dark frame (subtract_dark())

• correction of flat field (flat_correct())

The task returns a processed CCDData object.

Parameters

ccd
[CCDData] Frame to be reduced.

oscan
[CCDData, str or None, optional] For no overscan correction, set to None. Otherwise provide
a region of ccd from which the overscan is extracted, using the FITS conventions for index
order and index start, or a slice from ccd that contains the overscan. Default is None.

trim
[str or None, optional] For no trim correction, set to None. Otherwise provide a region of

64 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

ccd from which the image should be trimmed, using the FITS conventions for index order
and index start. Default is None.

error
[bool, optional] If True, create an uncertainty array for ccd. Default is False.

master_bias
[CCDData or None, optional] A master bias frame to be subtracted from ccd. The unit
of the master bias frame should match the unit of the image after gain correction if
gain_corrected is True. Default is None.

dark_frame
[CCDData or None, optional] A dark frame to be subtracted from the ccd. The unit
of the master dark frame should match the unit of the image after gain correction if
gain_corrected is True. Default is None.

master_flat
[CCDData or None, optional] A master flat frame to be divided into ccd. The unit of the mas-
ter flat frame should match the unit of the image after gain correction if gain_corrected
is True. Default is None.

bad_pixel_mask
[numpy.ndarray or None, optional] A bad pixel mask for the data. The bad pixel mask
should be in given such that bad pixels have a value of 1 and good pixels a value of 0.
Default is None.

gain
[Quantity or None, optional] Gain value to multiple the image by to convert to electrons.
Default is None.

readnoise
[Quantity or None, optional] Read noise for the observations. The read noise should be in
electrons. Default is None.

oscan_median
[bool, optional] If true, takes the median of each line. Otherwise, uses the mean. Default is
True.

oscan_model
[Model or None, optional] Model to fit to the data. If None, returns the values calculated by
the median or the mean. Default is None.

min_value
[float or None, optional] Minimum value for flat field. The value can either be None and no
minimum value is applied to the flat or specified by a float which will replace all values in
the flat by the min_value. Default is None.

dark_exposure
[Quantity or None, optional] Exposure time of the dark image; if specified, must also
provided data_exposure. Default is None.

data_exposure
[Quantity or None, optional] Exposure time of the science image; if specified, must also
provided dark_exposure. Default is None.

exposure_key
[Keyword, str or None, optional] Name of key in image metadata that contains exposure
time. Default is None.

exposure_unit
[Unit or None, optional] Unit of the exposure time if the value in the meta data does not

15.1. ccdproc Package 65

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.modeling.Model.html#astropy.modeling.Model
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit


ccdproc Documentation, Release 2.0.1

include a unit. Default is None.

dark_scale
[bool, optional] If True, scale the dark frame by the exposure times. Default is False.

gain_corrected
[bool, optional] If True, the master_bias, master_flat, and dark_frame have already
been gain corrected. Default is True.

Returns

occd
[CCDData] Reduded ccd.

Examples

1. To overscan, trim and gain correct a data set:

>>> import numpy as np
>>> from astropy import units as u
>>> from astropy.nddata import CCDData
>>> from ccdproc import ccd_process
>>> ccd = CCDData(np.ones([100, 100]), unit=u.adu)
>>> nccd = ccd_process(ccd, oscan='[1:10,1:100]',
... trim='[10:100, 1:100]', error=False,
... gain=2.0*u.electron/u.adu)

ccdmask

ccdproc.ccdmask(ratio, findbadcolumns=False, byblocks=False, ncmed=7, nlmed=7, ncsig=15, nlsig=15,
lsigma=9, hsigma=9, ngood=5)

Uses method based on the IRAF ccdmask task to generate a mask based on the given input.

Note: This function uses lines as synonym for the first axis and columns the second axis. Only two-
dimensional ratio is currently supported.

Parameters

ratio
[CCDData] Data to used to form mask. Typically this is the ratio of two flat field images.

findbadcolumns
[bool, optional] If set to True, the code will search for bad column sections. Note that this
treats columns as special and breaks symmetry between lines and columns and so is likely
only appropriate for detectors which have readout directions. Default is False.

byblocks
[bool, optional] If set to true, the code will divide the image up in to blocks of size nlsig
by ncsig and determine the standard deviation estimate in each block (as described in the
original IRAF task, see Notes below). If set to False, then the code will use scipy.ndimage.
percentile_filter to generate a running box version of the standard deviation estimate
and use that value for the standard deviation at each pixel. Default is False.

66 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.percentile_filter.html#scipy.ndimage.percentile_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.percentile_filter.html#scipy.ndimage.percentile_filter


ccdproc Documentation, Release 2.0.1

ncmed, nlmed
[int, optional] The column and line size of the moving median rectangle used to estimate
the uncontaminated local signal. The column median size should be at least 3 pixels to span
single bad columns. Default is 7.

ncsig, nlsig
[int, optional] The column and line size of regions used to estimate the uncontaminated
local sigma using a percentile. The size of the box should contain of order 100 pixels or
more. Default is 15.

lsigma, hsigma
[float, optional] Positive sigma factors to use for selecting pixels below and above the
median level based on the local percentile sigma. Default is 9.

ngood
[int, optional] Gaps of undetected pixels along the column direction of length less than this
amount are also flagged as bad pixels, if they are between pixels masked in that column.
Default is 5.

Returns

mask
[numpy.ndarray] A boolean ndarray where the bad pixels have a value of 1 (True) and valid
pixels 0 (False), following the numpy.ma conventions.

Notes

Similar implementation to IRAF’s ccdmask task. The Following documentation is copied directly from: http:
//stsdas.stsci.edu/cgi-bin/gethelp.cgi?ccdmask

The input image is first subtracted by a moving box median. The median is unaffected by bad pixels provided
the median size is larger that twice the size of a bad region. Thus, if 3 pixel wide bad columns are present then
the column median box size should be at least 7 pixels. The median box can be a single pixel wide along one
dimension if needed. This may be appropriate for spectroscopic long slit data.

The median subtracted image is then divided into blocks of size nclsig by nlsig. In each block the pixel values
are sorted and the pixels nearest the 30.9 and 69.1 percentile points are found; this would be the one sigma
points in a Gaussian noise distribution. The difference between the two count levels divided by two is then the
local sigma estimate. This algorithm is used to avoid contamination by the bad pixel values. The block size
must be at least 10 pixels in each dimension to provide sufficient pixels for a good estimate of the percentile
sigma. The sigma uncertainty estimate of each pixel in the image is then the sigma from the nearest block.

The deviant pixels are found by comparing the median subtracted residual to a specified sigma threshold factor
times the local sigma above and below zero (the lsigma and hsigma parameters). This is done for individual
pixels and then for column sums of pixels (excluding previously flagged bad pixels) from two to the number of
lines in the image. The sigma of the sums is scaled by the square root of the number of pixels summed so that
statistically low or high column regions may be detected even though individual pixels may not be statistically
deviant. For the purpose of this task one would normally select large sigma threshold factors such as six or
greater to detect only true bad pixels and not the extremes of the noise distribution.

As a final step each column is examined to see if there are small segments of unflagged pixels between bad
pixels. If the length of a segment is less than that given by the ngood parameter all the pixels in the segment are
also marked as bad.

15.1. ccdproc Package 67

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?ccdmask
http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?ccdmask


ccdproc Documentation, Release 2.0.1

combine

ccdproc.combine(img_list, output_file=None, method=’average’, weights=None, scale=None,
mem_limit=16000000000.0, clip_extrema=False, nlow=1, nhigh=1, min-
max_clip=False, minmax_clip_min=None, minmax_clip_max=None,
sigma_clip=False, sigma_clip_low_thresh=3, sigma_clip_high_thresh=3,
sigma_clip_func=<numpy.ma.core._frommethod object at 0x7fe1ea26c7b8>,
sigma_clip_dev_func=<numpy.ma.core._frommethod object at 0x7fe1ea26ca20>,
dtype=None, combine_uncertainty_function=None, **ccdkwargs)

Convenience function for combining multiple images.

Parameters

img_list
[numpy.ndarray, list or str] A list of fits filenames or CCDData objects that will be combined
together. Or a string of fits filenames separated by comma “,”.

output_file
[str or None, optional] Optional output fits file-name to which the final output can be directly
written. Default is None.

method
[str, optional] Method to combine images:

• 'average' : To combine by calculating the average.

• 'median' : To combine by calculating the median.

• 'sum' : To combine by calculating the sum.

Default is 'average'.

weights
[numpy.ndarray or None, optional] Weights to be used when combining images. An array
with the weight values. The dimensions should match the the dimensions of the data arrays
being combined. Default is None.

scale
[function or numpy.ndarray-like or None, optional] Scaling factor to be used when com-
bining images. Images are multiplied by scaling prior to combining them. Scaling may be
either a function, which will be applied to each image to determine the scaling factor, or a
list or array whose length is the number of images in the Combiner. Default is None.

mem_limit
[float, optional] Maximum memory which should be used while combining (in bytes). De-
fault is 16e9.

clip_extrema
[bool, optional] Set to True if you want to mask pixels using an IRAF-like minmax clipping
algorithm. The algorithm will mask the lowest nlow values and the highest nhigh values be-
fore combining the values to make up a single pixel in the resulting image. For example, the
image will be a combination of Nimages-low-nhigh pixel values instead of the combination
of Nimages.

Parameters below are valid only when clip_extrema is set to True, see Combiner.
clip_extrema() for the parameter description:

• nlow : int or None, optional

• nhigh : int or None, optional

68 Chapter 15. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


ccdproc Documentation, Release 2.0.1

minmax_clip
[bool, optional] Set to True if you want to mask all pixels that are below minmax_clip_min
or above minmax_clip_max before combining. Default is False.

Parameters below are valid only when minmax_clip is set to True, see Combiner.
minmax_clipping() for the parameter description:

• minmax_clip_min : float or None, optional

• minmax_clip_max : float or None, optional

sigma_clip
[bool, optional] Set to True if you want to reject pixels which have deviations greater than
those set by the threshold values. The algorithm will first calculated a baseline value using
the function specified in func and deviation based on sigma_clip_dev_func and the input
data array. Any pixel with a deviation from the baseline value greater than that set by
sigma_clip_high_thresh or lower than that set by sigma_clip_low_thresh will be rejected.
Default is False.

Parameters below are valid only when sigma_clip is set to True. See Combiner.
sigma_clipping() for the parameter description.

• sigma_clip_low_thresh : positive float or None, optional

• sigma_clip_high_thresh : positive float or None, optional

• sigma_clip_func : function, optional

• sigma_clip_dev_func : function, optional

dtype
[str or numpy.dtype or None, optional] The intermediate and resulting dtype for the com-
bined CCDs. See ccdproc.Combiner. If None this is set to float64. Default is None.

combine_uncertainty_function
[callable, None, optional] If None use the default uncertainty func when using average,
median or sum combine, otherwise use the function provided. Default is None.

ccdkwargs
[Other keyword arguments for astropy.nddata.fits_ccddata_reader.]

Returns

combined_image
[CCDData] CCDData object based on the combined input of CCDData objects.

cosmicray_lacosmic

ccdproc.cosmicray_lacosmic(ccd, sigclip=4.5, sigfrac=0.3, objlim=5.0, gain=1.0, readnoise=6.5,
satlevel=65535.0, pssl=0.0, niter=4, sepmed=True, cleantype=’meanmask’,
fsmode=’median’, psfmodel=’gauss’, psffwhm=2.5, psfsize=7, psfk=None,
psfbeta=4.765, verbose=False)

Identify cosmic rays through the lacosmic technique. The lacosmic technique identifies cosmic rays by identi-
fying pixels based on a variation of the Laplacian edge detection. The algorithm is an implementation of the
code describe in van Dokkum (2001) [1] as implemented by McCully (2014) [2]. If you use this algorithm,
please cite these two works.

Parameters

15.1. ccdproc Package 69

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

ccd
[CCDData or numpy.ndarray] Data to have cosmic ray cleaned.

sigclip
[float, optional] Laplacian-to-noise limit for cosmic ray detection. Lower values will flag
more pixels as cosmic rays. Default: 4.5.

sigfrac
[float, optional] Fractional detection limit for neighboring pixels. For cosmic ray neighbor
pixels, a Laplacian-to-noise detection limit of sigfrac * sigclip will be used. Default: 0.3.

objlim
[float, optional] Minimum contrast between Laplacian image and the fine structure image.
Increase this value if cores of bright stars are flagged as cosmic rays. Default: 5.0.

pssl
[float, optional] Previously subtracted sky level in ADU. We always need to work in elec-
trons for cosmic ray detection, so we need to know the sky level that has been subtracted so
we can add it back in. Default: 0.0.

gain
[float, optional] Gain of the image (electrons / ADU). We always need to work in electrons
for cosmic ray detection. Default: 1.0

readnoise
[float, optional] Read noise of the image (electrons). Used to generate the noise model of
the image. Default: 6.5.

satlevel
[float, optional] Saturation level of the image (electrons). This value is used to detect satu-
rated stars and pixels at or above this level are added to the mask. Default: 65535.0.

niter
[int, optional] Number of iterations of the LA Cosmic algorithm to perform. Default: 4.

sepmed
[bool, optional] Use the separable median filter instead of the full median filter. The separa-
ble median is not identical to the full median filter, but they are approximately the same and
the separable median filter is significantly faster and still detects cosmic rays well. Default:
True

cleantype
[str, optional] Set which clean algorithm is used:

• "median": An unmasked 5x5 median filter.

• "medmask": A masked 5x5 median filter.

• "meanmask": A masked 5x5 mean filter.

• "idw": A masked 5x5 inverse distance weighted interpolation.

Default: "meanmask".

fsmode
[str, optional] Method to build the fine structure image:

• "median": Use the median filter in the standard LA Cosmic algorithm.

• "convolve": Convolve the image with the psf kernel to calculate the fine structure image.

Default: "median".

70 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


ccdproc Documentation, Release 2.0.1

psfmodel
[str, optional] Model to use to generate the psf kernel if fsmode == ‘convolve’ and psfk is
None. The current choices are Gaussian and Moffat profiles:

• "gauss" and "moffat" produce circular PSF kernels.

• The "gaussx" and "gaussy" produce Gaussian kernels in the x and y directions respec-
tively.

Default: "gauss".

psffwhm
[float, optional] Full Width Half Maximum of the PSF to use to generate the kernel. Default:
2.5.

psfsize
[int, optional] Size of the kernel to calculate. Returned kernel will have size psfsize x psfsize.
psfsize should be odd. Default: 7.

psfk
[numpy.ndarray (with float dtype) or None, optional] PSF kernel array to use for the fine
structure image if fsmode == 'convolve'. If None and fsmode == 'convolve', we
calculate the psf kernel using psfmodel. Default: None.

psfbeta
[float, optional] Moffat beta parameter. Only used if fsmode=='convolve' and
psfmodel=='moffat'. Default: 4.765.

verbose
[bool, optional] Print to the screen or not. Default: False.

Returns

nccd
[CCDData or numpy.ndarray] An object of the same type as ccd is returned. If it is a
CCDData, the mask attribute will also be updated with areas identified with cosmic rays
masked.

crmask
[numpy.ndarray] If an numpy.ndarray is provided as ccd, a boolean ndarray with the cos-
mic rays identified will also be returned.

Notes

Implementation of the cosmic ray identification L.A.Cosmic: http://www.astro.yale.edu/dokkum/lacosmic/

References

[1], [2]

Examples

1) Given an numpy.ndarray object, the syntax for running cosmicrar_lacosmic would be:

>>> newdata, mask = cosmicray_lacosmic(data, sigclip=5) #doctest: +SKIP

15.1. ccdproc Package 71

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://www.astro.yale.edu/dokkum/lacosmic/


ccdproc Documentation, Release 2.0.1

where the error is an array that is the same shape as data but includes the pixel error. This would return a
data array, newdata, with the bad pixels replaced by the local median from a box of 11 pixels; and it would
return a mask indicating the bad pixels.

2) Given an CCDData object with an uncertainty frame, the syntax for running cosmicrar_lacosmic would be:

>>> newccd = cosmicray_lacosmic(ccd, sigclip=5) # doctest: +SKIP

The newccd object will have bad pixels in its data array replace and the mask of the object will be created
if it did not previously exist or be updated with the detected cosmic rays.

cosmicray_median

ccdproc.cosmicray_median(ccd, error_image=None, thresh=5, mbox=11, gbox=0, rbox=0)
Identify cosmic rays through median technique. The median technique identifies cosmic rays by identifying
pixels by subtracting a median image from the initial data array.

Parameters

ccd
[CCDData, numpy.ndarray or numpy.ma.MaskedArray] Data to have cosmic ray cleaned.

thresh
[float, optional] Threshold for detecting cosmic rays. Default is 5.

error_image
[numpy.ndarray, float or None, optional] Error level. If None, the task will use the standard
deviation of the data. If an ndarray, it should have the same shape as data. Default is None.

mbox
[int, optional] Median box for detecting cosmic rays. Default is 11.

gbox
[int, optional] Box size to grow cosmic rays. If zero, no growing will be done. Default is 0.

rbox
[int, optional] Median box for calculating replacement values. If zero, no pixels will be
replaced. Default is 0.

Returns

nccd
[CCDData or numpy.ndarray] An object of the same type as ccd is returned. If it is a
CCDData, the mask attribute will also be updated with areas identified with cosmic rays
masked.

nccd
[numpy.ndarray] If an numpy.ndarray is provided as ccd, a boolean ndarray with the cos-
mic rays identified will also be returned.

Notes

Similar implementation to crmedian in iraf.imred.crutil.crmedian.

72 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


ccdproc Documentation, Release 2.0.1

Examples

1) Given an numpy.ndarray object, the syntax for running cosmicray_median would be:

>>> newdata, mask = cosmicray_median(data, error_image=error,
... thresh=5, mbox=11,
... rbox=11, gbox=5) # doctest: +SKIP

where error is an array that is the same shape as data but includes the pixel error. This would return a data
array, newdata, with the bad pixels replaced by the local median from a box of 11 pixels; and it would
return a mask indicating the bad pixels.

2) Given an CCDData object with an uncertainty frame, the syntax for running cosmicray_median would be:

>>> newccd = cosmicray_median(ccd, thresh=5, mbox=11,
... rbox=11, gbox=5) # doctest: +SKIP

The newccd object will have bad pixels in its data array replace and the mask of the object will be created
if it did not previously exist or be updated with the detected cosmic rays.

create_deviation

ccdproc.create_deviation(ccd_data, gain=None, readnoise=None, disregard_nan=False,
add_keyword=True)

Create a uncertainty frame. The function will update the uncertainty plane which gives the standard deviation
for the data. Gain is used in this function only to scale the data in constructing the deviation; the data is not
scaled.

Parameters

ccd_data
[CCDData] Data whose deviation will be calculated.

gain
[Quantity or None, optional] Gain of the CCD; necessary only if ccd_data and readnoise
are not in the same units. In that case, the units of gain should be those that convert
ccd_data.data to the same units as readnoise. Default is None.

readnoise
[Quantity or None, optional] Read noise per pixel. Default is None.

disregard_nan: boolean
If True, any value of nan in the output array will be replaced by the readnoise.

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

ccd
[CCDData] CCDData object with uncertainty created; uncertainty is in the same units as the
data in the parameter ccd_data.

15.1. ccdproc Package 73

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

Raises

UnitsError
Raised if readnoise units are not equal to product of gain and ccd_data units.

flat_correct

ccdproc.flat_correct(ccd, flat, min_value=None, norm_value=None)
Correct the image for flat fielding.

The flat field image is normalized by its mean or a user-supplied value before flat correcting.

Parameters

ccd
[CCDData] Data to be transformed.

flat
[CCDData] Flatfield to apply to the data.

min_value
[float or None, optional] Minimum value for flat field. The value can either be None and no
minimum value is applied to the flat or specified by a float which will replace all values in
the flat by the min_value. Default is None.

norm_value
[float or None, optional] If not None, normalize flat field by this argument rather than the
mean of the image. This allows fixing several different flat fields to have the same scale. If
this value is negative or 0, a ValueError is raised. Default is None.

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

ccd
[CCDData] CCDData object with flat corrected.

gain_correct

ccdproc.gain_correct(ccd, gain, gain_unit=None)
Correct the gain in the image.

Parameters

ccd
[CCDData] Data to have gain corrected.

gain
[Quantity or Keyword] gain value for the image expressed in electrons per adu.

74 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


ccdproc Documentation, Release 2.0.1

gain_unit
[Unit or None, optional] Unit for the gain; used only if gain itself does not provide units.
Default is None.

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

result
[CCDData] CCDData object with gain corrected.

median_filter

ccdproc.median_filter(data, *args, **kwargs)
See scipy.ndimage.median_filter for arguments.

If the data is a CCDData object the result will be another CCDData object with the median filtered data as data
and copied unit and meta.

rebin

ccdproc.rebin(ccd, newshape)
Deprecated since version 1.1: The rebin function is deprecated and may be removed in a future version.

Rebin an array to have a new shape.

Parameters

ccd
[CCDData or numpy.ndarray] Data to rebin.

newshape
[tuple] Tuple containing the new shape for the array.

Returns

output
[CCDData or numpy.ndarray] An array with the new shape. It will have the same type as
the input object.

Raises

TypeError
A type error is raised if data is not an numpy.ndarray or CCDData.

ValueError
A value error is raised if the dimension of the new shape is not equal to the data’s.

15.1. ccdproc Package 75

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

Notes

This is based on the scipy cookbook for rebinning: http://wiki.scipy.org/Cookbook/Rebinning

If rebinning a CCDData object to a smaller shape, the masking and uncertainty are not handled correctly.

Examples

Given an array that is 100x100:

import numpy as np
from astropy import units as u
arr1 = CCDData(np.ones([10, 10]), unit=u.adu)

The syntax for rebinning an array to a shape of (20,20) is:

rebin(arr1, (20,20))

sigma_func

ccdproc.sigma_func(arr, axis=None)
Robust method for calculating the deviation of an array. sigma_func uses the median absolute deviation to
determine the standard deviation.

Parameters

arr
[CCDData or numpy.ndarray] Array whose deviation is to be calculated.

axis
[int, tuple of ints or None, optional] Axis or axes along which the function is performed. If
None it is performed over all the dimensions of the input array. The axis argument can also
be negative, in this case it counts from the last to the first axis. Default is None.

Returns

uncertainty
[float] uncertainty of array estimated from median absolute deviation.

subtract_bias

ccdproc.subtract_bias(ccd, master, add_keyword=True)
Subtract master bias from image.

Parameters

ccd
[CCDData] Image from which bias will be subtracted.

master
[CCDData] Master image to be subtracted from ccd.

76 Chapter 15. API Reference

http://wiki.scipy.org/Cookbook/Rebinning
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

result
[CCDData] CCDData object with bias subtracted.

subtract_dark

ccdproc.subtract_dark(ccd, master, dark_exposure=None, data_exposure=None, exposure_time=None, ex-
posure_unit=None, scale=False, add_keyword=True)

Subtract dark current from an image.

Parameters

ccd
[CCDData] Image from which dark will be subtracted.

master
[CCDData] Dark image.

dark_exposure
[Quantity or None, optional] Exposure time of the dark image; if specified, must also
provided data_exposure. Default is None.

data_exposure
[Quantity or None, optional] Exposure time of the science image; if specified, must also
provided dark_exposure. Default is None.

exposure_time
[str or Keyword or None, optional] Name of key in image metadata that contains exposure
time. Default is None.

exposure_unit
[Unit or None, optional] Unit of the exposure time if the value in the meta data does not
include a unit. Default is None.

scale: bool, optional
If True, scale the dark frame by the exposure times. Default is False.

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

result
[CCDData] Dark-subtracted image.

15.1. ccdproc Package 77

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

subtract_overscan

ccdproc.subtract_overscan(ccd, overscan=None, overscan_axis=1, fits_section=None, median=False,
model=None, add_keyword=True)

Subtract the overscan region from an image.

Parameters

ccd
[CCDData] Data to have overscan frame corrected.

overscan
[CCDData or None, optional] Slice from ccd that contains the overscan. Must provide either
this argument or fits_section, but not both. Default is None.

overscan_axis
[0, 1 or None, optional] Axis along which overscan should combined with mean or median.
Axis numbering follows the python convention for ordering, so 0 is the first axis and 1 is the
second axis.

If overscan_axis is explicitly set to None, the axis is set to the shortest dimension of the
overscan section (or 1 in case of a square overscan). Default is 1.

fits_section
[str or None, optional] Region of ccd from which the overscan is extracted, using the FITS
conventions for index order and index start. See Notes and Examples below. Must provide
either this argument or overscan, but not both. Default is None.

median
[bool, optional] If true, takes the median of each line. Otherwise, uses the mean. Default is
False.

model
[Model or None, optional] Model to fit to the data. If None, returns the values calculated by
the median or the mean. Default is None.

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

ccd
[CCDData] CCDData object with overscan subtracted.

Raises

TypeError
A TypeError is raised if either ccd or overscan are not the correct objects.

Notes

The format of the fits_section string follow the rules for slices that are consistent with the FITS standard (v3)
and IRAF usage of keywords like TRIMSEC and BIASSEC. Its indexes are one-based, instead of the python-

78 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.modeling.Model.html#astropy.modeling.Model
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

standard zero-based, and the first index is the one that increases most rapidly as you move through the array in
memory order, opposite the python ordering.

The ‘fits_section’ argument is provided as a convenience for those who are processing files that contain TRIM-
SEC and BIASSEC. The preferred, more pythonic, way of specifying the overscan is to do it by indexing the
data array directly with the overscan argument.

Examples

Creating a 100x100 array containing ones just for demonstration purposes:

>>> import numpy as np
>>> from astropy import units as u
>>> arr1 = CCDData(np.ones([100, 100]), unit=u.adu)

The statement below uses all rows of columns 90 through 99 as the overscan:

>>> no_scan = subtract_overscan(arr1, overscan=arr1[:, 90:100])
>>> assert (no_scan.data == 0).all()

This statement does the same as the above, but with a FITS-style section:

>>> no_scan = subtract_overscan(arr1, fits_section='[91:100, :]')
>>> assert (no_scan.data == 0).all()

Spaces are stripped out of the fits_section string.

test

ccdproc.test(package=None, test_path=None, args=None, plugins=None, verbose=False, pastebin=None,
remote_data=False, pep8=False, pdb=False, coverage=False, open_files=False, **kwargs)

Run the tests using py.test. A proper set of arguments is constructed and passed to pytest.main.

Parameters

package
[str, optional] The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’. If nothing is
specified all default tests are run.

test_path
[str, optional] Specify location to test by path. May be a single file or directory. Must be
specified absolutely or relative to the calling directory.

args
[str, optional] Additional arguments to be passed to pytest.main in the args keyword argu-
ment.

plugins
[list, optional] Plugins to be passed to pytest.main in the plugins keyword argument.

verbose
[bool, optional] Convenience option to turn on verbose output from py.test. Passing True is
the same as specifying '-v' in args.

pastebin
[{‘failed’,’all’,None}, optional] Convenience option for turning on py.test pastebin output.
Set to 'failed' to upload info for failed tests, or 'all' to upload info for all tests.

15.1. ccdproc Package 79

http://pytest.org/latest
http://pytest.org/latest/builtin.html#pytest.main
http://pytest.org/latest/builtin.html#pytest.main
http://pytest.org/latest/builtin.html#pytest.main
http://pytest.org/latest/
http://pytest.org/latest/


ccdproc Documentation, Release 2.0.1

remote_data
[bool, optional] Controls whether to run tests marked with @remote_data. These tests use
online data and are not run by default. Set to True to run these tests.

pep8
[bool, optional] Turn on PEP8 checking via the pytest-pep8 plugin and disable normal tests.
Same as specifying '--pep8 -k pep8' in args.

pdb
[bool, optional] Turn on PDB post-mortem analysis for failing tests. Same as specifying
'--pdb' in args.

coverage
[bool, optional] Generate a test coverage report. The result will be placed in the directory
htmlcov.

open_files
[bool, optional] Fail when any tests leave files open. Off by default, because this adds extra
run time to the test suite. Works only on platforms with a working lsof command.

parallel
[int, optional] When provided, run the tests in parallel on the specified number of CPUs. If
parallel is negative, it will use the all the cores on the machine. Requires the pytest-xdist
plugin installed. Only available when using Astropy 0.3 or later.

kwargs
Any additional keywords passed into this function will be passed on to the astropy test
runner. This allows use of test-related functionality implemented in later versions of astropy
without explicitly updating the package template.

transform_image

ccdproc.transform_image(ccd, transform_func, **kwargs)
Transform the image.

Using the function specified by transform_func, the transform will be applied to data, uncertainty, and mask in
ccd.

Parameters

ccd
[CCDData] Data to be transformed.

transform_func
[callable] Function to be used to transform the data, mask and uncertainty.

kwargs :
Additional keyword arguments to be used by the transform_func.

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

80 Chapter 15. API Reference

http://pypi.python.org/pypi/pytest-pep8
https://pypi.python.org/pypi/pytest-xdist
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

ccd
[CCDData] A transformed CCDData object.

Notes

At this time, transform will be applied to the uncertainty data but it will only transform the data. This will not
properly handle uncertainties that arise due to correlation between the pixels.

These should only be geometric transformations of the images. Other methods should be used if the units of ccd
need to be changed.

Examples

Given an array that is 100x100:

>>> import numpy as np
>>> from astropy import units as u
>>> arr1 = CCDData(np.ones([100, 100]), unit=u.adu)

The syntax for transforming the array using scipy.ndimage.shift:

>>> from scipy.ndimage.interpolation import shift
>>> from ccdproc import transform_image
>>> transformed = transform_image(arr1, shift, shift=(5.5, 8.1))

trim_image

ccdproc.trim_image(ccd, fits_section=None, add_keyword=True)
Trim the image to the dimensions indicated.

Parameters

ccd
[CCDData] CCD image to be trimmed, sliced if desired.

fits_section
[str or None, optional] Region of ccd from which the overscan is extracted; see
subtract_overscan for details. Default is None.

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

trimmed_ccd
[CCDData] Trimmed image.

15.1. ccdproc Package 81

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.shift.html#scipy.ndimage.shift
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

Examples

Given an array that is 100x100,

>>> import numpy as np
>>> from astropy import units as u
>>> arr1 = CCDData(np.ones([100, 100]), unit=u.adu)

the syntax for trimming this to keep all of the first index but only the first 90 rows of the second index is

>>> trimmed = trim_image(arr1[:, :90])
>>> trimmed.shape
(100, 90)
>>> trimmed.data[0, 0] = 2
>>> arr1.data[0, 0]
1.0

This both trims and makes a copy of the image.

Indexing the image directly does not do the same thing, quite:

>>> not_really_trimmed = arr1[:, :90]
>>> not_really_trimmed.data[0, 0] = 2
>>> arr1.data[0, 0]
2.0

In this case, not_really_trimmed is a view of the underlying array arr1, not a copy.

wcs_project

ccdproc.wcs_project(ccd, target_wcs, target_shape=None, order=’bilinear’, add_keyword=True)
Given a CCDData image with WCS, project it onto a target WCS and return the reprojected data as a new
CCDData image.

Any flags, weight, or uncertainty are ignored in doing the reprojection.

Parameters

ccd
[CCDData] Data to be projected.

target_wcs
[WCS object] WCS onto which all images should be projected.

target_shape
[two element list-like or None, optional] Shape of the output image. If omitted, defaults to
the shape of the input image. Default is None.

order
[str, optional] Interpolation order for re-projection. Must be one of:

• ‘nearest-neighbor’

• ‘bilinear’

• ‘biquadratic’

• ‘bicubic’

Default is 'bilinear'.

82 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS


ccdproc Documentation, Release 2.0.1

add_keyword
[str, Keyword or dict-like, optional] Item(s) to add to metadata of result. Set to False or None
to completely disable logging. Default is to add a dictionary with a single item: The key is
the name of this function and the value is a string containing the arguments the function was
called with, except the value of this argument.

Returns

ccd
[CCDData] A transformed CCDData object.

15.1.2 Classes

Combiner(ccd_list[, dtype]) A class for combining CCDData objects.
Conf Configuration parameters for ccdproc.
ImageFileCollection([location, keywords, . . . ]) Representation of a collection of image files.
Keyword(name[, unit, value])

Combiner

class ccdproc.Combiner(ccd_list, dtype=None)
Bases: object

A class for combining CCDData objects.

The Combiner class is used to combine together CCDData objects including the method for combining the data,
rejecting outlying data, and weighting used for combining frames.

Parameters

ccd_list
[list] A list of CCDData objects that will be combined together.

dtype
[str or numpy.dtype or None, optional] Allows user to set dtype. See numpy.array dtype
parameter description. If None it uses np.float64. Default is None.

Raises

TypeError
If the ccd_list are not CCDData objects, have different units, or are different shapes.

Examples

The following is an example of combining together different CCDData objects:

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.nddata import CCDData
>>> from ccdproc import Combiner
>>> ccddata1 = CCDData(np.ones((4, 4)), unit=u.adu)
>>> ccddata2 = CCDData(np.zeros((4, 4)), unit=u.adu)
>>> ccddata3 = CCDData(np.ones((4, 4)), unit=u.adu)

(continues on next page)

15.1. ccdproc Package 83

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.python.org/3/library/functions.html#object
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

(continued from previous page)

>>> c = Combiner([ccddata1, ccddata2, ccddata3])
>>> ccdall = c.average_combine()
>>> ccdall
CCDData([[ 0.66666667, 0.66666667, 0.66666667, 0.66666667],

[ 0.66666667, 0.66666667, 0.66666667, 0.66666667],
[ 0.66666667, 0.66666667, 0.66666667, 0.66666667],
[ 0.66666667, 0.66666667, 0.66666667, 0.66666667]])

Attributes Summary

dtype
scaling Scaling factor used in combining images.
weights Weights used when combining the CCDData objects.

Methods Summary

average_combine(self[, scale_func, . . . ]) Average combine together a set of arrays.
clip_extrema(self[, nlow, nhigh]) Mask pixels using an IRAF-like minmax clipping al-

gorithm.
median_combine(self[, median_func, . . . ]) Median combine a set of arrays.
minmax_clipping(self[, min_clip, max_clip]) Mask all pixels that are below min_clip or above

max_clip.
sigma_clipping(self[, low_thresh, . . . ]) Pixels will be rejected if they have deviations greater

than those set by the threshold values.
sum_combine(self[, sum_func, scale_to, . . . ]) Sum combine together a set of arrays.

Attributes Documentation

dtype

scaling
Scaling factor used in combining images.

Parameters

scale
[function or numpy.ndarray-like or None, optional] Images are multiplied by scaling prior
to combining them. Scaling may be either a function, which will be applied to each image
to determine the scaling factor, or a list or array whose length is the number of images in
the Combiner.

weights
Weights used when combining the CCDData objects.

Parameters

weight_values
[numpy.ndarray or None] An array with the weight values. The dimensions should match
the the dimensions of the data arrays being combined.

84 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


ccdproc Documentation, Release 2.0.1

Methods Documentation

average_combine(self, scale_func=<function average at 0x7fe1ea284730>, scale_to=None, uncer-
tainty_func=<numpy.ma.core._frommethod object at 0x7fe1ea26ca20>)

Average combine together a set of arrays.

A CCDData object is returned with the data property set to the average of the arrays. If the data was masked
or any data have been rejected, those pixels will not be included in the average. A mask will be returned,
and if a pixel has been rejected in all images, it will be masked. The uncertainty of the combined image is
set by the standard deviation of the input images.

Parameters

scale_func
[function, optional] Function to calculate the average. Defaults to numpy.ma.average.

scale_to
[float or None, optional] Scaling factor used in the average combined image. If given, it
overrides scaling. Defaults to None.

uncertainty_func
[function, optional] Function to calculate uncertainty. Defaults to numpy.ma.std.

Returns

combined_image: CCDData
CCDData object based on the combined input of CCDData objects.

clip_extrema(self, nlow=0, nhigh=0)
Mask pixels using an IRAF-like minmax clipping algorithm. The algorithm will mask the lowest nlow
values and the highest nhigh values before combining the values to make up a single pixel in the resulting
image. For example, the image will be a combination of Nimages-nlow-nhigh pixel values instead of the
combination of Nimages.

Parameters

nlow
[int or None, optional] If not None, the number of low values to reject from the combina-
tion. Default is 0.

nhigh
[int or None, optional] If not None, the number of high values to reject from the combina-
tion. Default is 0.

Notes

Note that this differs slightly from the nominal IRAF imcombine behavior when other masks are in use.
For example, if nhigh>=1 and any pixel is already masked for some other reason, then this algorithm will
count the masking of that pixel toward the count of nhigh masked pixels.

Here is a copy of the relevant IRAF help text [0]:

nlow = 1, nhigh = (minmax)
The number of low and high pixels to be rejected by the “minmax” algorithm. These numbers are
converted to fractions of the total number of input images so that if no rejections have taken place the
specified number of pixels are rejected while if pixels have been rejected by masking, thresholding,
or nonoverlap, then the fraction of the remaining pixels, truncated to an integer, is used.

15.1. ccdproc Package 85

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.average.html#numpy.ma.average
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.std.html#numpy.ma.std
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

References

[0]

median_combine(self, median_func=<function median at 0x7fe1ea2847b8>, scale_to=None, uncer-
tainty_func=<function sigma_func at 0x7fe1ddb267b8>)

Median combine a set of arrays.

A CCDData object is returned with the data property set to the median of the arrays. If the data was masked
or any data have been rejected, those pixels will not be included in the median. A mask will be returned,
and if a pixel has been rejected in all images, it will be masked. The uncertainty of the combined image is
set by 1.4826 times the median absolute deviation of all input images.

Parameters

median_func
[function, optional] Function that calculates median of a numpy.ma.MaskedArray. Default
is numpy.ma.median.

scale_to
[float or None, optional] Scaling factor used in the average combined image. If given, it
overrides scaling. Defaults to None.

uncertainty_func
[function, optional] Function to calculate uncertainty. Defaults is sigma_func.

Returns

combined_image: CCDData
CCDData object based on the combined input of CCDData objects.

Warning: The uncertainty currently calculated using the median absolute deviation does not account
for rejected pixels.

minmax_clipping(self, min_clip=None, max_clip=None)
Mask all pixels that are below min_clip or above max_clip.

Parameters

min_clip
[float or None, optional] If not None, all pixels with values below min_clip will be masked.
Default is None.

max_clip
[float or None, optional] If not None, all pixels with values above min_clip will be masked.
Default is None.

sigma_clipping(self, low_thresh=3, high_thresh=3, func=<numpy.ma.core._frommethod ob-
ject at 0x7fe1ea26c7b8>, dev_func=<numpy.ma.core._frommethod object at
0x7fe1ea26ca20>)

Pixels will be rejected if they have deviations greater than those set by the threshold values. The algorithm
will first calculated a baseline value using the function specified in func and deviation based on dev_func
and the input data array. Any pixel with a deviation from the baseline value greater than that set by
high_thresh or lower than that set by low_thresh will be rejected.

86 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.median.html#numpy.ma.median
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

Parameters

low_thresh
[positive float or None, optional] Threshold for rejecting pixels that deviate below the
baseline value. If negative value, then will be convert to a positive value. If None, no
rejection will be done based on low_thresh. Default is 3.

high_thresh
[positive float or None, optional] Threshold for rejecting pixels that deviate above the
baseline value. If None, no rejection will be done based on high_thresh. Default is 3.

func
[function, optional] Function for calculating the baseline values (i.e. numpy.ma.mean or
numpy.ma.median). This should be a function that can handle numpy.ma.MaskedArray
objects. Default is numpy.ma.mean.

dev_func
[function, optional] Function for calculating the deviation from the baseline value (i.e.
numpy.ma.std). This should be a function that can handle numpy.ma.MaskedArray ob-
jects. Default is numpy.ma.std.

sum_combine(self, sum_func=<numpy.ma.core._frommethod object at 0x7fe1ea26ca90>,
scale_to=None, uncertainty_func=<numpy.ma.core._frommethod object at
0x7fe1ea26ca20>)

Sum combine together a set of arrays.

A CCDData object is returned with the data property set to the sum of the arrays. If the data was masked
or any data have been rejected, those pixels will not be included in the sum. A mask will be returned,
and if a pixel has been rejected in all images, it will be masked. The uncertainty of the combined image
is set by the multiplication of summation of standard deviation of the input by square root of number of
images. Because sum_combine returns ‘pure sum’ with masked pixels ignored, if re-scaled sum is needed,
average_combine have to be used with multiplication by number of images combined.

Parameters

sum_func
[function, optional] Function to calculate the sum. Defaults to numpy.ma.sum.

scale_to
[float or None, optional] Scaling factor used in the sum combined image. If given, it
overrides scaling. Defaults to None.

uncertainty_func
[function, optional] Function to calculate uncertainty. Defaults to numpy.ma.std.

Returns

combined_image: CCDData
CCDData object based on the combined input of CCDData objects.

Conf

class ccdproc.Conf
Bases: astropy.config.ConfigNamespace

Configuration parameters for ccdproc.

15.1. ccdproc Package 87

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.mean.html#numpy.ma.mean
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.median.html#numpy.ma.median
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.mean.html#numpy.ma.mean
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.std.html#numpy.ma.std
https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.std.html#numpy.ma.std
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.sum.html#numpy.ma.sum
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.std.html#numpy.ma.std
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.config.ConfigNamespace.html#astropy.config.ConfigNamespace


ccdproc Documentation, Release 2.0.1

Attributes Summary

auto_logging() Whether to automatically log operations to meta-
dataIf set to False, there is no need to specify
add_keyword=Falsewhen calling processing opera-
tions.

Attributes Documentation

auto_logging
Whether to automatically log operations to metadataIf set to False, there is no need to specify
add_keyword=Falsewhen calling processing operations.

ImageFileCollection

class ccdproc.ImageFileCollection(location=None, keywords=None, find_fits_by_reading=False, file-
names=None, glob_include=None, glob_exclude=None, ext=0)

Bases: object

Representation of a collection of image files.

The class offers a table summarizing values of keywords in the FITS headers of the files in the collection and
offers convenient methods for iterating over the files in the collection. The generator methods use simple filtering
syntax and can automate storage of any FITS files modified in the loop using the generator.

Parameters

location
[str or None, optional] Path to directory containing FITS files. Default is None.

keywords
[list of str, ‘*’ or None, optional] Keywords that should be used as column headings in the
summary table. If the value is or includes ‘*’ then all keywords that appear in any of the
FITS headers of the files in the collection become table columns. Default value is ‘*’ unless
info_file is specified. Default is None.

find_fits_by_reading: bool, optional
If True, read each file in location to check whether the file is a FITS file and include it in
the collection based on that, rather than by file name. Compressed files, e.g. image.fits.gz,
will NOT be properly detected. Will be ignored if ‘filenames‘ is not ‘‘None‘‘.

filenames: str, list of str, or None, optional
List of the names of FITS files which will be added to the collection. The filenames may
either be in location or the name can be a relative or absolute path to the file. Default is
None.

glob_include: str or None, optional
Unix-style filename pattern to select filenames to include in the file collection. Can be used
in conjunction with glob_exclude to easily select subsets of files in the target directory.
Default is None.

glob_exclude: str or None, optional
Unix-style filename pattern to select filenames to exclude from the file collection. Can
be used in conjunction with glob_include to easily select subsets of files in the target
directory. Default is None.

88 Chapter 15. API Reference

https://docs.python.org/3/library/functions.html#object


ccdproc Documentation, Release 2.0.1

ext: str or int, optional
The extension from which the header and data will be read in all files.Default is 0.

Raises

ValueError
Raised if keywords are set to a combination of ‘*’ and any other value.

Attributes Summary

ext str or int, The extension from which the header and
data will be read in all files.

files list of str, Unfiltered list of FITS files in location.
glob_exclude str or None, Unix-style filename pattern to select file-

names to exclude in the file collection.
glob_include str or None, Unix-style filename pattern to select file-

names to include in the file collection.
keywords list of str, Keywords currently in the summary table.
location str, Path name to directory containing FITS files.
summary Table of values of FITS keywords for files in the

collection.

Methods Summary

ccds(self[, ccd_kwargs]) Generator that yields each CCDData in the collec-
tion.

data(self[, do_not_scale_image_data]) Generator that yields each image in the collection.
files_filtered(self, \*\*kwd) Determine files whose keywords have listed values.
filter(self, \*\*kwd) Create a new collection by filtering the current col-

lection.
hdus(self[, do_not_scale_image_data]) Generator that yields each HDUList in the collection.
headers(self[, do_not_scale_image_data]) Generator that yields each header in the collection.
refresh(self) Refresh the collection by re-reading headers.
sort(self, keys) Sort the list of files to determine the order of itera-

tion.
values(self, keyword[, unique]) List of values for a keyword.

Attributes Documentation

ext
str or int, The extension from which the header and data will be read in all files.

files
list of str, Unfiltered list of FITS files in location.

glob_exclude
str or None, Unix-style filename pattern to select filenames to exclude in the file collection.

glob_include
str or None, Unix-style filename pattern to select filenames to include in the file collection.

keywords

15.1. ccdproc Package 89

http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table


ccdproc Documentation, Release 2.0.1

list of str, Keywords currently in the summary table.

Setting the keywords causes the summary table to be regenerated unless the new keywords are a subset of
the old.

Changed in version 1.3: Added deleter for keywords property.

location
str, Path name to directory containing FITS files.

summary
Table of values of FITS keywords for files in the collection.

Each keyword is a column heading. In addition, there is a column called file that contains the name of
the FITS file. The directory is not included as part of that name.

The first column is always named file.

The order of the remaining columns depends on how the summary was constructed.

If a wildcard, * was used then the order is the order in which the keywords appear in the FITS files from
which the summary is constructed.

If an explicit list of keywords was supplied in setting up the collection then the order of the columns is the
order of the keywords.

Methods Documentation

ccds(self, ccd_kwargs=None, **kwd)
Generator that yields each CCDData in the collection.

If any of the parameters save_with_name, save_location or overwrite evaluates to True the gener-
ator will write a copy of each FITS file it is iterating over. In other words, if save_with_name and/or
save_location is a string with non-zero length, and/or overwrite is True, a copy of each FITS file will
be made.

Parameters

save_with_name
[str, optional] string added to end of file name (before extension) if FITS file should be
saved after iteration. Unless save_location is set, files will be saved to location of the
source files self.location. Default is ''.

save_location
[str, optional] Directory in which to save FITS files; implies that FITS files will be saved.
Note this provides an easy way to copy a directory of files–loop over the CCDData with
save_location set. Default is ''.

overwrite
[bool, optional] If True, overwrite input FITS files. Default is False.

clobber
[bool, optional] Alias for overwrite. Default is False.

do_not_scale_image_data
[bool, optional] If True, prevents fits from scaling images. Default is True. Default is
True.

return_fname
[bool, optional] If True, return the tuple (header, file_name) instead of just header. The file
name returned is the name of the file only, not the full path to the file. Default is False.

90 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table


ccdproc Documentation, Release 2.0.1

ccd_kwargs
[dict, optional] Dict with parameters for fits_ccddata_reader. For instance, the key
'unit' can be used to specify the unit of the data. If 'unit' is not given then 'adu' is
used as the default unit. See fits_ccddata_reader for a complete list of parameters that
can be passed through ccd_kwargs.

regex_match
[bool, keyword-only] If True, then string values in the **kwd dictionary are treated as
regular expression patterns and matching is done by regular expression search. The search
is always case insensitive.

**kwd :
Any additional keywords are used to filter the items returned; see files_filtered exam-
ples for details.

Returns

astropy.nddata.CCDData
If return_fname is False, yield the next CCDData in the collection.

(astropy.nddata.CCDData, str)
If return_fname is True, yield a tuple of (CCDData, file name) for the next item in the
collection.

data(self, do_not_scale_image_data=False, **kwd)
Generator that yields each image in the collection.

If any of the parameters save_with_name, save_location or overwrite evaluates to True the gener-
ator will write a copy of each FITS file it is iterating over. In other words, if save_with_name and/or
save_location is a string with non-zero length, and/or overwrite is True, a copy of each FITS file will
be made.

Parameters

save_with_name
[str, optional] string added to end of file name (before extension) if FITS file should be
saved after iteration. Unless save_location is set, files will be saved to location of the
source files self.location. Default is ''.

save_location
[str, optional] Directory in which to save FITS files; implies that FITS files will be saved.
Note this provides an easy way to copy a directory of files–loop over the image with
save_location set. Default is ''.

overwrite
[bool, optional] If True, overwrite input FITS files. Default is False.

clobber
[bool, optional] Alias for overwrite. Default is False.

do_not_scale_image_data
[bool, optional] If True, prevents fits from scaling images. Default is False. Default is
True.

return_fname
[bool, optional] If True, return the tuple (header, file_name) instead of just header. The file
name returned is the name of the file only, not the full path to the file. Default is False.

15.1. ccdproc Package 91

http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData


ccdproc Documentation, Release 2.0.1

ccd_kwargs
[dict, optional] Dict with parameters for fits_ccddata_reader. For instance, the key
'unit' can be used to specify the unit of the data. If 'unit' is not given then 'adu' is
used as the default unit. See fits_ccddata_reader for a complete list of parameters that
can be passed through ccd_kwargs.

regex_match
[bool, keyword-only] If True, then string values in the **kwd dictionary are treated as
regular expression patterns and matching is done by regular expression search. The search
is always case insensitive.

**kwd :
Any additional keywords are used to filter the items returned; see files_filtered exam-
ples for details.

Returns

numpy.ndarray
If return_fname is False, yield the next image in the collection.

(numpy.ndarray, str)
If return_fname is True, yield a tuple of (image, file name) for the next item in the
collection.

files_filtered(self, **kwd)
Determine files whose keywords have listed values.

Parameters

include_path
[bool, keyword-only] If the keyword include_path=True is set, the returned list contains
not just the filename, but the full path to each file. Default is False.

regex_match
[bool, keyword-only] If True, then string values in the **kwd dictionary are treated as
regular expression patterns and matching is done by regular expression search. The search
is always case insensitive.

**kwd :
**kwd is dict of keywords and values the files must have. The value ‘*’ represents any
value. A missing keyword is indicated by value ‘’.

Returns

filenames
[list] The files that satisfy the keyword-value restrictions specified by the **kwd.

Notes

Value comparison is case insensitive for strings, whether matching exactly or matching with regular ex-
pressions.

Examples

Some examples for filtering:

92 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


ccdproc Documentation, Release 2.0.1

>>> keys = ['imagetyp','filter']
>>> collection = ImageFileCollection('test/data', keywords=keys)
>>> collection.files_filtered(imagetyp='LIGHT', filter='R')
>>> collection.files_filtered(imagetyp='*', filter='')

In case you want to filter with keyword names that cannot be used as keyword argument name, you have
to unpack them using a dictionary. For example if a keyword name contains a space or a -:

>>> add_filters = {'exp-time': 20, 'ESO TPL ID': 1050}
>>> collection.files_filtered(imagetyp='LIGHT', **add_filters)

filter(self, **kwd)
Create a new collection by filtering the current collection.

Parameters

regex_match
[bool, keyword-only] If True, then string values in the **kwd dictionary are treated as
regular expression patterns and matching is done by regular expression search. The search
is always case insensitive.

**kwd :
**kwd is dict of keywords and values the files must have. The value ‘*’ represents any
value. A missing keyword is indicated by value ‘’.

Returns

ImageFileCollection
A new collection with the files matched by the arguments to filter.

hdus(self, do_not_scale_image_data=False, **kwd)
Generator that yields each HDUList in the collection.

If any of the parameters save_with_name, save_location or overwrite evaluates to True the gener-
ator will write a copy of each FITS file it is iterating over. In other words, if save_with_name and/or
save_location is a string with non-zero length, and/or overwrite is True, a copy of each FITS file will
be made.

Parameters

save_with_name
[str, optional] string added to end of file name (before extension) if FITS file should be
saved after iteration. Unless save_location is set, files will be saved to location of the
source files self.location. Default is ''.

save_location
[str, optional] Directory in which to save FITS files; implies that FITS files will be saved.
Note this provides an easy way to copy a directory of files–loop over the HDUList with
save_location set. Default is ''.

overwrite
[bool, optional] If True, overwrite input FITS files. Default is False.

clobber
[bool, optional] Alias for overwrite. Default is False.

15.1. ccdproc Package 93



ccdproc Documentation, Release 2.0.1

do_not_scale_image_data
[bool, optional] If True, prevents fits from scaling images. Default is False. Default is
True.

return_fname
[bool, optional] If True, return the tuple (header, file_name) instead of just header. The file
name returned is the name of the file only, not the full path to the file. Default is False.

ccd_kwargs
[dict, optional] Dict with parameters for fits_ccddata_reader. For instance, the key
'unit' can be used to specify the unit of the data. If 'unit' is not given then 'adu' is
used as the default unit. See fits_ccddata_reader for a complete list of parameters that
can be passed through ccd_kwargs.

regex_match
[bool, keyword-only] If True, then string values in the **kwd dictionary are treated as
regular expression patterns and matching is done by regular expression search. The search
is always case insensitive.

**kwd :
Any additional keywords are used to filter the items returned; see files_filtered exam-
ples for details.

Returns

astropy.io.fits.HDUList
If return_fname is False, yield the next HDUList in the collection.

(astropy.io.fits.HDUList, str)
If return_fname is True, yield a tuple of (HDUList, file name) for the next item in the
collection.

headers(self, do_not_scale_image_data=True, **kwd)
Generator that yields each header in the collection.

If any of the parameters save_with_name, save_location or overwrite evaluates to True the gener-
ator will write a copy of each FITS file it is iterating over. In other words, if save_with_name and/or
save_location is a string with non-zero length, and/or overwrite is True, a copy of each FITS file will
be made.

Parameters

save_with_name
[str, optional] string added to end of file name (before extension) if FITS file should be
saved after iteration. Unless save_location is set, files will be saved to location of the
source files self.location. Default is ''.

save_location
[str, optional] Directory in which to save FITS files; implies that FITS files will be saved.
Note this provides an easy way to copy a directory of files–loop over the header with
save_location set. Default is ''.

overwrite
[bool, optional] If True, overwrite input FITS files. Default is False.

clobber
[bool, optional] Alias for overwrite. Default is False.

94 Chapter 15. API Reference

http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList
http://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList


ccdproc Documentation, Release 2.0.1

do_not_scale_image_data
[bool, optional] If True, prevents fits from scaling images. Default is True. Default is
True.

return_fname
[bool, optional] If True, return the tuple (header, file_name) instead of just header. The file
name returned is the name of the file only, not the full path to the file. Default is False.

ccd_kwargs
[dict, optional] Dict with parameters for fits_ccddata_reader. For instance, the key
'unit' can be used to specify the unit of the data. If 'unit' is not given then 'adu' is
used as the default unit. See fits_ccddata_reader for a complete list of parameters that
can be passed through ccd_kwargs.

regex_match
[bool, keyword-only] If True, then string values in the **kwd dictionary are treated as
regular expression patterns and matching is done by regular expression search. The search
is always case insensitive.

**kwd :
Any additional keywords are used to filter the items returned; see files_filtered exam-
ples for details.

Returns

astropy.io.fits.Header
If return_fname is False, yield the next header in the collection.

(astropy.io.fits.Header, str)
If return_fname is True, yield a tuple of (header, file name) for the next item in the
collection.

refresh(self)
Refresh the collection by re-reading headers.

sort(self, keys)
Sort the list of files to determine the order of iteration.

Sort the table of files according to one or more keys. This does not create a new object, instead is sorts in
place.

Parameters

keys
[str, list of str] The key(s) to order the table by.

values(self, keyword, unique=False)
List of values for a keyword.

Parameters

keyword
[str] Keyword (i.e. table column) for which values are desired.

unique
[bool, optional] If True, return only the unique values for the keyword. Default is False.

Returns

15.1. ccdproc Package 95

http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/api/astropy.nddata.fits_ccddata_reader.html#astropy.nddata.fits_ccddata_reader
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header


ccdproc Documentation, Release 2.0.1

list
Values as a list.

Keyword

class ccdproc.Keyword(name, unit=None, value=None)
Bases: object

Attributes Summary

name
unit
value

Methods Summary

value_from(self, header) Set value of keyword from FITS header.

Attributes Documentation

name

unit

value

Methods Documentation

value_from(self, header)
Set value of keyword from FITS header.

Parameters

header
[Header] FITS header containing a value for this keyword.

96 Chapter 15. API Reference

https://docs.python.org/3/library/functions.html#object
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header


ccdproc Documentation, Release 2.0.1

15.1.3 Class Inheritance Diagram

Combiner

ConfConfigNamespace

ImageFileCollection

Keyword

15.2 ccdproc.utils.slices Module

Define utility functions and classes for ccdproc

15.2.1 Functions

slice_from_string(string[, fits_convention]) Convert a string to a tuple of slices.

slice_from_string

ccdproc.utils.slices.slice_from_string(string, fits_convention=False)
Convert a string to a tuple of slices.

Parameters

string
[str] A string that can be converted to a slice.

fits_convention
[bool, optional] If True, assume the input string follows the FITS convention for indexing:
the indexing is one-based (not zero-based) and the first axis is that which changes most
rapidly as the index increases.

Returns

slice_tuple
[tuple of slice objects] A tuple able to be used to index a numpy.array

15.2. ccdproc.utils.slices Module 97



ccdproc Documentation, Release 2.0.1

Notes

The string argument can be anything that would work as a valid way to slice an array in Numpy. It must be
enclosed in matching brackets; all spaces are stripped from the string before processing.

Examples

>>> import numpy as np
>>> arr1d = np.arange(5)
>>> a_slice = slice_from_string('[2:5]')
>>> arr1d[a_slice]
array([2, 3, 4])
>>> a_slice = slice_from_string('[ : : -2] ')
>>> arr1d[a_slice]
array([4, 2, 0])
>>> arr2d = np.array([arr1d, arr1d + 5, arr1d + 10])
>>> arr2d
array([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

>>> a_slice = slice_from_string('[1:-1, 0:4:2]')
>>> arr2d[a_slice]
array([[5, 7]])
>>> a_slice = slice_from_string('[0:2,0:3]')
>>> arr2d[a_slice]
array([[0, 1, 2],

[5, 6, 7]])

98 Chapter 15. API Reference



Bibliography

[1] van Dokkum, P; 2001, “Cosmic-Ray Rejection by Laplacian Edge Detection”. The Publications of the Astronom-
ical Society of the Pacific, Volume 113, Issue 789, pp. 1420-1427. doi: 10.1086/323894

[2] McCully, C., 2014, “Astro-SCRAPPY”, https://github.com/astropy/astroscrappy

[0] image.imcombine help text. http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?imcombine

99

https://github.com/astropy/astroscrappy
http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?imcombine


ccdproc Documentation, Release 2.0.1

100 Bibliography



Python Module Index

c
ccdproc, 59
ccdproc.utils.slices, 97

101



ccdproc Documentation, Release 2.0.1

102 Python Module Index



Index

A
auto_logging (ccdproc.Conf attribute), 88
average_combine() (ccdproc.Combiner method), 85

B
background_deviation_box() (in module ccdproc), 60
background_deviation_filter() (in module ccdproc),

60
bitfield_to_boolean_mask() (in module ccdproc), 61
block_average() (in module ccdproc), 62
block_reduce() (in module ccdproc), 62
block_replicate() (in module ccdproc), 63

C
ccd_process() (in module ccdproc), 64
ccdmask() (in module ccdproc), 66
ccdproc (module), 59
ccdproc.utils.slices (module), 97
ccds() (ccdproc.ImageFileCollection method), 90
clip_extrema() (ccdproc.Combiner method), 85
combine() (in module ccdproc), 68
Combiner (class in ccdproc), 83
Conf (class in ccdproc), 87
cosmicray_lacosmic() (in module ccdproc), 69
cosmicray_median() (in module ccdproc), 72
create_deviation() (in module ccdproc), 73

D
data() (ccdproc.ImageFileCollection method), 91
dtype (ccdproc.Combiner attribute), 84

E
ext (ccdproc.ImageFileCollection attribute), 89

F
files (ccdproc.ImageFileCollection attribute), 89
files_filtered() (ccdproc.ImageFileCollection

method), 92
filter() (ccdproc.ImageFileCollection method), 93

flat_correct() (in module ccdproc), 74

G
gain_correct() (in module ccdproc), 74
glob_exclude (ccdproc.ImageFileCollection attribute),

89
glob_include (ccdproc.ImageFileCollection attribute),

89

H
hdus() (ccdproc.ImageFileCollection method), 93
headers() (ccdproc.ImageFileCollection method), 94

I
ImageFileCollection (class in ccdproc), 88

K
Keyword (class in ccdproc), 96
keywords (ccdproc.ImageFileCollection attribute), 89

L
location (ccdproc.ImageFileCollection attribute), 90

M
median_combine() (ccdproc.Combiner method), 86
median_filter() (in module ccdproc), 75
minmax_clipping() (ccdproc.Combiner method), 86

N
name (ccdproc.Keyword attribute), 96

R
rebin() (in module ccdproc), 75
refresh() (ccdproc.ImageFileCollection method), 95

S
scaling (ccdproc.Combiner attribute), 84
sigma_clipping() (ccdproc.Combiner method), 86

103



ccdproc Documentation, Release 2.0.1

sigma_func() (in module ccdproc), 76
slice_from_string() (in module ccdproc.utils.slices),

97
sort() (ccdproc.ImageFileCollection method), 95
subtract_bias() (in module ccdproc), 76
subtract_dark() (in module ccdproc), 77
subtract_overscan() (in module ccdproc), 78
sum_combine() (ccdproc.Combiner method), 87
summary (ccdproc.ImageFileCollection attribute), 90

T
test() (in module ccdproc), 79
transform_image() (in module ccdproc), 80
trim_image() (in module ccdproc), 81

U
unit (ccdproc.Keyword attribute), 96

V
value (ccdproc.Keyword attribute), 96
value_from() (ccdproc.Keyword method), 96
values() (ccdproc.ImageFileCollection method), 95

W
wcs_project() (in module ccdproc), 82
weights (ccdproc.Combiner attribute), 84

104 Index


	I Detailed, step-by-step guide
	II Getting started
	III Using ccdproc

